Influence of Growing Season on Phenolic Compounds and Antioxidant Properties of Grape Berries from Vines Grown in Subtropical Climate

文献类型: 外文期刊

第一作者: Zhang, Yali

作者: Zhang, Yali;Zhu, Lei;Lu, Jiang;Huang, Yu;Lu, Jiang

作者机构:

关键词: Growing seasons;climatic factors;summer and winter berries;two crops;total phenols;anthocyanins;temperature;DPPH

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The influence of growing season (winter vs summer) on the synthesis and accumulation of phenolic compounds and antioxidant properties was studied in five grape cultivars for three consecutive years. Four phenolic compound parameters (total phenols, flavonoids, flavah-3-ols, and anthocyanins) and three antioxidant property parameters [2,2-diphenyl-1-picrylhydrazyl radical scavenging, 2,2-azinobis(3-ethylbehzothiazolinesulfonic acid) radical scavenging, and ferric reducing antioxidant power] were investigated. Results showed that both phenolic compounds and antioxidant properties in the seed and skin of winter berries were significantly (p < 0.05) higher than those of summer berries for all of the cultivars investigated. The anthocyanin profiles of berry skins appeared to be extremely consistent in different years for the same crop, whereas they varied greatly between the two crops within the same year (winter vs summer). Winter berries contained richer glucosides of delphinidin, cyanidin, peonidin, and malvidin than summer berries. These seasonal variations of phenolic compounds and antioxidant properties on grape berries were largely contributed by climatic factors such as temperature, solar radiation, rainfall, and hydrothermic coefficient between different growing seasons.

分类号: R15

  • 相关文献

[1]The growing season impacts the accumulation and composition of flavonoids in grape skins in two-crop-a-year viticulture. Wang, Ying,Zhu, Lei,Lu, Jiang,Huang, Yu,Zhang, Yali,Xu, Changmou.

[2]Protecting Local Breeds of Livestock in NW China. Lang Xia,Wang Cailian,Squires, Victor. 2010

[3]Late Maturing Longan Pericarp Color Affected by the Changes of Pigment and Total Phenols Contents in the Period of Fruit Keeping Fresh on Plant. Xu, J. H.,Yu, D.,Wei, X. Q.,Xu, L.,Lin, Q. H.,Chen, Z. F.,Zheng, S. Q.,Wu, S. H.. 2010

[4]Comparison of Different Extraction Methods for Flavonoids and Polyphenols from Manilkara Zapota Leaves and Evaluation of Antioxidant Activity. Ma, Fei-Yue,Zhang, Xiu-Mei,Liu, Yu-Ge,Fu, Qiong,Ma, Zhi-Ling. 2016

[5]TPC in the leaves of 116 sweet potato (Ipomoea batatas L.) varieties and Pushu 53 leaf extracts. Xu, Wenqing,Liu, Lixiang,Hu, Bing,Sun, Yi,Ye, Hong,Zeng, Xiaoxiong,Ma, Daifu. 2010

[6]In Vitro Antioxidant and Anti-Inflammatory Activities of Protocatechualdehyde Isolated from Phellinus gilvus. Chang, Zhi-Qiang,Gebru, Elias,Rhee, Man-Hee,Park, Seung-Chun,Chang, Zhi-Qiang,Lee, Sam-Pin,Kim, Jong-Choon,Cheng, Henrique. 2011

[7]Phenolic Antioxidants from Green Tea Produced from Camellia crassicolumna Var. multiplex. Liu, Qing,Zhang, Ying-Jun,Yang, Chong-Ren,Liu, Qing,Xu, Mei.

[8]Antioxidant and Cytotoxic Phenolic Compounds of Areca Nut(Areca catechu). Zhang Xing,Wu Jiao,Han Zhuang,Mei Wen-li,Dai Hao-fu. 2010

[9]Bioactive Quinic Acid Derivatives from Ageratina adenophora. Zheng, Meng-Fei,Wang, Jing,Lei, Ting,Zhou, Zhong-Yu,Tan, Jian-Wen,Liu, Wan-Xue,Wan, Fang-Hao,Zheng, Meng-Fei,Wang, Jing,Lei, Ting,Xu, Qiao-Lin.

[10]In vitro antioxidant activities of endophytic fungi isolated from the liverwort Scapania verrucosa. Zeng, P. Y.,Wu, J. G.,Liao, L. M.,Wu, J. Z.,Chen, T. -Q.,Wong, K. -H.. 2011

[11]Antioxidant Activities of Extract and Fractions from Receptaculum Nelumbinis and Related Flavonol Glycosides. Wu, Yan-Bin,Zheng, Li-Jun,Wu, Jian-Guo,Wu, Jin-Zhong,Chen, Ti-Qiang,Yi, Jun. 2012

[12]Chemical composition and antioxidant activity of essential oil of pine cones of Pinus armandii from the Southwest region of China. Yang, X.,Zhao, H. T.,Meng, Q.,Zhang, H.,Yao, L.,Zhang, Y. C.,Dong, A. J.,Ma, Y.,Wang, Z. Y.,Xu, D. C.,Yang, X.,Wang, J.,Ding, Y.. 2010

[13]Antioxidant Phenolic Compounds of Dracaena Cambodiana. Luo, Ying,Wang, Hui,Xu, Xuerong,Mei, Wenli,Dai, Haofu,Luo, Ying,Wang, Hui,Xu, Xuerong,Mei, Wenli,Dai, Haofu. 2010

[14]Antioxidant Phenolic Compounds of Cassava (Manihot esculenta) from Hainan. Yi, Bo,Wei, Xiaoyi,Hu, Lifei,Mei, Wenli,Zhou, Kaibing,Wang, Hui,Luo, Ying,Dai, Haofu,Yi, Bo,Yi, Bo. 2011

[15]The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Sun, L. L.,Chen, Y. J.,Peng, C. L.,Zhang, J. Z.,Zhang, J. Z.,Chow, W. S.,Chen, J. W..

[16]Effects of Different Drying Methods and Extraction Condition on Antioxidant Properties of Shiitake (Lentinus edodes). Zhang, Zuofa,Lv, Guoying,Pan, Huijuan,Wu, Yongzhi,Fan, Leifa.

[17]Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium. Liu, Dahui,Liu, Wei,Zhu, Duanwei,Geng, Mingjian,Zhou, Wenbing,Yang, Tewu,Liu, Dahui.

[18]Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. Jiao, Yun,Ma, Rui-juan,Shen, Zhi-jun,Yan, Juan,Yu, Ming-liang. 2014

[19]Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kadsura coccinea (Lem.) AC Smith. Yao, Jinyan,Huang, Shaoxi,Sun, Jian,Wang, Jubing,Garcia-Garcia, Elena,Garcia-Garcia, Elena. 2009

[20]Root restriction affected anthocyanin composition and up-regulated the transcription of their biosynthetic genes during berry development in 'Summer Black' grape. He, Jianjun,Yu, Xiuming,Li, Jiefa,Zhang, Caixi,Xu, Wenping,Wang, Shiping,Bai, Yang,Bai, Xianjin,Cao, Xiongjun. 2013

作者其他论文 更多>>