Reduction of iron oxides by Klebsiella pneumoniae L17: Kinetics and surface properties
文献类型: 外文期刊
第一作者: Liu, Tong-xu
作者: Liu, Tong-xu;Li, Xiao-min;Li, Fang-bai;Zhang, Wei;Chen, Man-jia;Zhou, Shun-gui
作者机构:
关键词: AQDS;Iron oxides;Klebsiella pneumoniae l17;Reduction;Secondary minerals
期刊名称:COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS ( 影响因子:4.539; 五年影响因子:4.039 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: The kinetics of the reduction dissolution of iron oxides was studied by using Klebsiella pneumoniae L17 in a pH 7.0 bicarbonate buffer. The microbial reduction of various iron oxides was measured in the absence and presence of AQDS (9,10-anthraquinone-2,6-disulfonic acid), and the results of their rates vs. the surface areas of iron oxides suggested that the iron oxide reduction rate by L17 was obviously affected by the surface area but did not completely depend on it especially for hydrous ferric oxide. Increasing the crystalline degree of hematite decreased the rate of iron reduction, indicating that a higher crystalline degree inhibited microbial iron reduction. Increasing the AQDS concentration significantly increased the rate of HFO reduction, which suggested that the addition of AQDS significantly accelerated the microbial reduction of crystalline Fe(III) oxides. From the increased production of AH_2DS (2,6-anthrahydroquinone disulfonate) and cell numbers, it can be concluded that the enhancement may be because of the growth in cells and abiotic Fe(III) reduction by AH_2DS. X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy all indicated that secondary minerals (e.g., vivianite (Fe_3(PO_4)_2) and siderite (FeCO_3)) were the biogenic Fe(II) solids formed upon the bioreduction of iron oxides.
分类号: O648
- 相关文献
作者其他论文 更多>>
-
Membralin is required for maize development and defines a branch of the endoplasmic reticulum-associated degradation pathway in plants
作者:Liu, Baiyu;Zhang, Ke;Qi, Shoumei;Jin, Zhe;Chen, Donghua;Zhang, Wei;Zhang, Kewei;Li, Kunpeng;Xu, Changzheng;He, Qiuxia;Cheng, Wen;Ding, Zhaohua;Zhao, Xiangyu
关键词:endoplasmic reticulum-associated degradation; maize; membralin; plant development; unfold protein response
-
Biocontrol performance and mass production potential of the larval endoparasitoid Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) against the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)
作者:Zhang, Rui;Zhang, Wei;Zhao, Qi;Keyhani, Nemat O.;Lei, Xian-Fu;Liu, Chang-Hua;Al Dhafer, Hathal M.;Mohamed, Amr
关键词:Spodoptera frugiperda; Field investigation; Campoletis chlorideae; Biological control; Mass production; Two-sex life table
-
Construction of a high-density genetic map for yardlong bean and identification of ANT1 as a regulator of anthocyanin biosynthesis
作者:Zhang, Hongmei;Zhang, Wei;Liu, Xiaoqing;Chen, Xin;Chen, Huatao;Meng, Shan;Yan, Wei;Hui, Linchong;Chen, Wei
关键词:
-
Homoeologous exchanges contribute to branch angle variations in rapeseed: Insights from transcriptome, QTL-seq and gene functional analysis
作者:Sun, Chengming;Zhou, Xiaoying;Fu, Sanxiong;Wang, Xiaodong;Peng, Qi;Gao, Jianqin;Chen, Feng;Zhang, Wei;Hu, Maolong;Zhang, Jiefu;Wu, Jian;Liu, Huimin;Wang, Youping;Xue, Zhifei;Fu, Tingdong;Yi, Bin
关键词:Rapeseed; Branch angle; Homoeologous exchange; WGCNA; QTL-seq; WRKY40
-
A genome-wide association analysis for salt tolerance during the soybean germination stage and development of KASP markers
作者:Wang, Junyan;Zhou, Miaomiao;Su, Chengfu;Wang, Junyan;Zhou, Miaomiao;Zhang, Hongmei;Liu, Xiaoqing;Zhang, Wei;Wang, Qiong;Jia, Qianru;Chen, Huatao;Xu, Donghe;Chen, Huatao
关键词:soybean; salt tolerance; germination stage; genome-wide association analysis; KASP marker
-
Urea Coated with Polyaspartic Acid-Chitosan Increases Foxtail Millet (Setaria italica L. Beauv.) Grain Yield by Improving Nitrogen Metabolism
作者:Lu, Lin;Zhang, Wei;Xv, Yanli;Dong, Haosheng;Chen, Disu;Yan, Peng;Dong, Zhiqiang;Wang, Qi;Zhang, Wei;Dong, Zhiqiang;Gao, Ming;Li, Shujie
关键词:fertilizer; nitrate reductase; nitrogen availability; high yield and efficiency; one-time basic fertilizer application
-
Endogenous cell wall degrading enzyme LytD is important for the biocontrol activity of Bacillus subtilis
作者:Wang, Luotao;Chen, Si;Su, Xin;Wang, Zhenshuo;Zeng, Qingchao;Wang, Qi;Li, Yan;Huang, Jianquan;Zhang, Xun;Wang, Lujun;Zhang, Wei
关键词:autolysin; peptidoglycan; cell wall degrading enzyme; colonization; biofilm; induced resistance; biological control