Effects of plant height on type I and type II resistance to fusarium head blight in wheat

文献类型: 外文期刊

第一作者: Yan, W.

作者: Yan, W.;Li, H. B.;Liu, C. J.;Yan, W.;Cai, S. B.;Ma, H. X.;Rebetzke, G. J.;Liu, C. J.

作者机构:

关键词: Fusarium graminearum;fusarium head blight;near-isogenic lines;Rht genes;Triticum aestivum;wheat scab

期刊名称:PLANT PATHOLOGY ( 影响因子:2.59; 五年影响因子:2.924 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: By carefully separating type I and type II resistances, the possible effects of plant height on fusarium head blight (FHB) resistance in wheat were assessed using near-isogenic lines (NILs) for several different reduced-height (Rht) genes. Tall isolines all gave better type I resistance than their respective dwarf counterparts when assessed at their natural heights. These differences largely disappeared when the dwarf isolines were physically raised so that their spikes were positioned at the same height as those of their respective tall counterparts. The effects of plant height on type II resistance was less clear. For those NIL pairs which showed significant differences, it was the dwarf isolines which gave better resistance. As the Rht genes involved in these NILs locate at different genomic regions, the differences in FHB between the dwarf and tall isolines are unlikely to be the result of linkages between each of the different Rbt loci with a beneficial or a deleterious gene affecting type I or type II resistance. Rather, the different FHB resistances are probably caused by direct or indirect effects of height difference per se, and microclimate may have contributed to the better type I resistance of the tall plants. Thus, caution should be exercised when attempting to exploit any of the FHB resistant loci co-located with Rht genes.

分类号: S432.1

  • 相关文献

[1]Simultaneous determination of deoxynivalenol, and 15-and 3-acetyldeoxynivalenol in cereals by HPLC-UV detection. Yang, D.,Geng, Z. M.,Yao, J. B.,Zhang, X.,Zhang, P. P.,Ma, H. X.. 2013

[2]A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum. Liu, Liang,Guo, Lihua,Qiu, Dewen,Kondo, Hideki.

[3]Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Lin, Yanhong,Zhang, Hailong,Wang, Shuangchao,Qiu, Dewen,Guo, Lihua.

[4]Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Zhang, Hailong,Chen, Xiaoguang,Qiu, Dewen,Guo, Lihua.

[5]Molecular cytogenetic analysis of a durum wheat x Thinopyrum distichum hybrid used as a new source of resistance to Fusarium head blight in the greenhouse. Chen, Q,Eudes, F,Conner, RL,Graf, R,Comeau, A,Collin, J,Ahmad, F,Zhou, R,Li, H,Zhao, Y,Laroche, A. 2001

[6]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[7]Expression profiling identifies differentially expressed genes associated with the fusarium head blight resistance QTL 2DL from the wheat variety Wuhan-1. Long, XiangYu,Balcerzak, Margaret,Gulden, Sigrun,Cao, Wenguang,Fedak, George,Ouellet, Therese,Long, XiangYu,Wei, Yu-Ming,Zheng, You-Liang,Somers, Daryl.

[8]Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Ma, H. X.,Zhang, K. M.,Gao, L.,Bai, G. H.,Chen, H. G.,Cai, Z. X.,Lu, W. Z..

[9]Single-Strand Conformational Polymorphism Markers Associated with a Major QTL for Fusarium Head Blight Resistance in Wheat. Yu, G. H.,Tang, K. X.,Ma, H. X.,Bai, G. H..

[10]Identification of the genes and pathways associated with pigment gland morphogenesis in cotton by transcriptome profiling of near-isogenic lines. Quan Sun,Shengwei Li,Min Chen,Yingfan Cai,Jianchuan Mo,Xiaohong He,Huaizhong Jiang,JinggaoLiu,Kairong Lei.

[11]Characterization and identification of cold tolerant near-isogenic lines in rice. Zhou, Lei,Hu, Guanglong,Pan, Yinghua,Zhang, Hongliang,Li, Jinjie,Li, Zichao,Zhou, Lei,Hu, Guanglong,Pan, Yinghua,Zhang, Hongliang,Li, Jinjie,Li, Zichao,Zeng, Yawen,Yang, Shuming,Zhou, Lei,You, Aiqing,Hu, Guanglong. 2012

[12]Effect of wx genes on amylose content, physicochemical properties of wheat starch, and the suitability of waxy genotype for producing Chinese crisp sticks. Ma, Hongbo,Lv, Guofeng,Wang, Xiue,Cheng, Shunhe,Zhang, Xiao,Gao, Derong,Zhang, Boqiao,Lv, Guofeng,Wu, Ronglin,Cheng, Xiaoming,Cheng, Shunhe,Bie, Tongde,Wang, Canguo. 2013

[13]Determination of Mineral Elements in Brown Rice of Near-Isogenic Lines Population for Japonica Rice by ICP-AES. Wang Lu-xiang,Li Qi-wan,Zeng Ya-wen,Sun Zheng-hai,Yang Shu-ming,Du Juan,Pu Xiao-ying,Du Wei,Zeng Ya-wen,Xiao Feng-hui,Sun Zheng-hai. 2008

[14]Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Zhu, Xun,Yang, Yanjv,Wu, Qingjun,Wang, Shaoli,Xie, Wen,Guo, Zhaojiang,Kang, Shi,Xia, Jixing,Zhang, Youjun.

[15]Effects of the dominant glandless gene Gl(2)(e) on agronomic and fibre characters of Upland cotton. Y.L Yuan,,Y.H Chen,C.M Tang,S.R Jing,S.L Liu,J.J Pan,R.J Kohel,T.Z Zhang. 2000

[16]Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Wu, Xinyi,Cheng, Ruiru,Xue, Shulin,Kong, Zhongxin,Wan, Hongshen,Li, Guoqiang,Huang, Yulong,Jia, Haiyan,Zhang, Lixia,Ma, Zhengqiang,Jia, Jizeng. 2014

[17]Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin. Zhu, Xun,Lei, Yanyuan,Yang, Yanjv,Wu, Qingjun,Wang, Shaoli,Xie, Wen,Guo, Zhaojiang,Fu, Wei,Zhang, Youjun,Zhu, Xun,Li, Jianhong,Baxter, Simon W..

[18]Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Bian, X. F.,Liu, X.,Zhao, Z. G.,Jiang, L.,Gao, H.,Zhang, Y. H.,Zheng, M.,Chen, L. M.,Liu, S. J.,Wan, J. M.,Zhai, H. Q.,Wan, J. M.. 2011

[19]Development of Near-sogenic Lines in a Parthenogenetically Reproduced Thrips Species, Frankliniella occidentalis. Yuan, Guangdi,Wan, Yanran,Li, Xiaoyu,He, Bingqing,Zhang, Youjun,Xu, Baoyun,Wang, Shaoli,Xie, Wen,Wu, Qingjun,Zhou, Xuguo. 2017

[20]Application of marker-assisted backcross to introgress Bph3, Bph14 and Bph15 into an elite indica rice variety for improving its resistance to brown planthopper. Hu, Wei,Jiang, Yijun,Xiao, Hanxiang,Zhang, Yang,Hu, Kan.

作者其他论文 更多>>