Cul3-KLHL20 E3 ubiquitin ligase plays a key role in the arms race between HIV-1 Nef and host SERINC5 restriction

文献类型: 外文期刊

第一作者: Li, Sunan

作者: Li, Sunan;Li, Rongrong;Ahmad, Iqbal;Liu, Xiaomeng;Zheng, Yong-Hui;Johnson, Silas F.;Zheng, Yong-Hui;Sun, Liangliang

作者机构:

期刊名称:NATURE COMMUNICATIONS ( 影响因子:17.694; 五年影响因子:17.763 )

ISSN:

年卷期: 2022 年 13 卷 1 期

页码:

收录情况: SCI

摘要: SERINC5 is a host-restriction factor preventing HIV progeny entry, which is counteracted by interactions with HIV Nef. Here, Li et al. show that E3 ubiquitin ligase Cullin 3 polyubiquitinates SERINC5 at Lys 130 via K48- and K33-linked ubiquitin chains and provide evidence that this modification is not only required for its membrane localization and anti-viral activity but also relevant for Nef counteractive activity. HIV-1 must counteract various host restrictions to establish productive infection. SERINC5 is a potent restriction factor that blocks HIV-1 entry from virions, but its activity is counteracted by Nef. The SERINC5 and Nef activities are both initiated from the plasma membrane, where SERINC5 is packaged into virions for viral inhibition or downregulated by Nef via lysosomal degradation. However, it is still unclear how SERINC5 is localized to and how its expression is regulated on the plasma membrane. We now report that Cullin 3-KLHL20, a trans-Golgi network (TGN)-localized E3 ubiquitin ligase, polyubiquitinates SERINC5 at lysine 130 via K33/K48-linked ubiquitination. The K33-linked polyubiquitination determines SERINC5 expression on the plasma membrane, and the K48-linked polyubiquitination contributes to SERINC5 downregulation from the cell surface. Our study reveals an important role of K130 polyubiquitination and K33/K48-linked ubiquitin chains in HIV-1 infection by regulating SERINC5 post-Golgi trafficking and degradation.

分类号:

  • 相关文献
作者其他论文 更多>>