Structure formation mechanism of pectin-soy protein isolate gels: Unraveling the role of peach pectin fractions

文献类型: 外文期刊

第一作者: Xie, Jin

作者: Xie, Jin;Bi, Jinfeng;Lyu, Jian;Xie, Jin;Jacquet, Nicolas;Blecker, Christophe;Liu, Xiaoxian;Feng, Shuhan;Feng, Shuhan

作者机构:

关键词: Peach pectin; Soy protein isolate; Rheological property; SEM-dispersive X-ray spectroscopy; Chemical force; NMR spectra

期刊名称:INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES ( 影响因子:8.5; 五年影响因子:8.7 )

ISSN: 0141-8130

年卷期: 2024 年 281 卷

页码:

收录情况: SCI

摘要: This study investigated the macro & micro properties of the composite gels formed by soy protein isolate (SPI) and peach pectin fractions: water-soluble pectin (WSP), chelator-soluble pectin (CSP), and sodium carbonate soluble pectin (NSP). Specially, the interaction between pectin fractions and SPI was studied to explain the formation mechanism of the composite gels. WSP, as a high methoxyl pectin, exhibited rich branching (sugar ratio B = 3.10). CSP, as a low methoxyl pectin, depicted a high linearity. NSP, with low linearity (sugar ratio A = 6.14), contained numerous side chains. Due to the strong interaction between pectin fractions and SPI, the new composites with excellent dense network microstructures were formed, accompanied by increased apparent viscosity, higher G ' and G '', and reduced particle size. XRD and FT-IR analysis highlighted the modifications in gel structures. SEM-dispersive X-ray spectroscopy observed elemental distribution and framework composition in pectin-SPI gels. Hydrophobic interaction was the most important chemical force in pectin-SPI binding. Molecular docking results indicated that galacturonic acid in pectin bound more strongly to 7S than to 11S, with tighter hydrogen bonds. Notably, WSP-SPI showed the lowest turbidity, indicating enhanced solubility and particle dispersion, which helped prevent aggregation. CSP-SPI demonstrated the highest G ' and G '', ascribing to the high linearity and abundant carboxyl groups in CSP. NSP-SPI showed the highest apparent viscosity and irregular structure. Overall, the texture properties of pectin-SPI gels were driven by pectin's structure properties, which would provide new and valuable information for texture control in gel formulation.

分类号:

  • 相关文献
作者其他论文 更多>>