Detection Method of Cow Estrus Behavior in Natural Scenes Based on Improved YOLOv5
文献类型: 外文期刊
第一作者: Wang, Rong
作者: Wang, Rong;Zhao, Chunjiang;Zhang, Hongming;Li, Shuqin;Wang, Rong;Li, Qifeng;Zhao, Chunjiang;Gao, Ronghua;Feng, Lu;Wang, Rong;Li, Qifeng;Zhao, Chunjiang;Gao, Ronghua;Feng, Lu;Gao, Zongzhi
作者机构:
关键词: cow estrus; mounting behavior detection; YOLOv5; multiscale optimization; loss-function optimization
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.408; 五年影响因子:3.459 )
ISSN:
年卷期: 2022 年 12 卷 9 期
页码:
收录情况: SCI
摘要: Natural breeding scenes have the characteristics of a large number of cows, complex lighting, and a complex background environment, which presents great difficulties for the detection of dairy cow estrus behavior. However, the existing research on cow estrus behavior detection works well in ideal environments with a small number of cows and has a low inference speed and accuracy in natural scenes. To improve the inference speed and accuracy of cow estrus behavior in natural scenes, this paper proposes a cow estrus behavior detection method based on the improved YOLOv5. By improving the YOLOv5 model, it has stronger detection ability for complex environments and multi-scale objects. First, the atrous spatial pyramid pooling (ASPP) module is employed to optimize the YOLOv5l network at multiple scales, which improves the model's receptive field and ability to perceive global contextual multiscale information. Second, a cow estrus behavior detection model is constructed by combining the channel-attention mechanism and a deep-asymmetric-bottleneck module. Last, K-means clustering is performed to obtain new anchors and complete intersection over union (CIoU) is used to introduce the relative ratio between the predicted box of the cow mounting and the true box of the cow mounting to the regression box prediction function to improve the scale invariance of the model. Multiple cameras were installed in a natural breeding scene containing 200 cows to capture videos of cows mounting. A total of 2668 images were obtained from 115 videos of cow mounting events from the training set, and 675 images were obtained from 29 videos of cow mounting events from the test set. The training set is augmented by the mosaic method to increase the diversity of the dataset. The experimental results show that the average accuracy of the improved model was 94.3%, that the precision was 97.0%, and that the recall was 89.5%, which were higher than those of mainstream models such as YOLOv5, YOLOv3, and Faster R-CNN. The results of the ablation experiments show that ASPP, new anchors, C3SAB, and C3DAB designed in this study can improve the accuracy of the model by 5.9%. Furthermore, when the ASPP dilated convolution was set to (1,5,9,13) and the loss function was set to CIoU, the model had the highest accuracy. The class activation map function was utilized to visualize the model's feature extraction results and to explain the model's region of interest for cow images in natural scenes, which demonstrates the effectiveness of the model. Therefore, the model proposed in this study can improve the accuracy of the model for detecting cow estrus events. Additionally, the model's inference speed was 71 frames per second (fps), which meets the requirements of fast and accurate detection of cow estrus events in natural scenes and all-weather conditions.
分类号:
- 相关文献
作者其他论文 更多>>
-
A Clean and Health-Care-Focused Way to Reduce Indoor Airborne Bacteria in Calf House with Long-Wave Ultraviolet
作者:Ding, Luyu;Yao, Chunxia;Li, Qifeng;Ding, Luyu;Yao, Chunxia;Li, Qifeng;Ding, Luyu;Yao, Chunxia;Li, Qifeng;Zhang, Qing;Wang, Chaoyuan;Shan, Feifei
关键词:closed calf house; emission rate; size distribution; microbial composition; health improvement
-
An FPGA implementation of Bayesian inference with spiking neural networks
作者:Li, Haoran;An, Lingling;Wan, Bo;An, Lingling;Wan, Bo;Fang, Ying;Fang, Ying;Li, Qifeng;Liu, Jian K.
关键词:spiking neural networks; probabilistic graphical models; Bayesian inference; importance sampling; FPGA
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
A Point Cloud Segmentation Method for Pigs from Complex Point Cloud Environments Based on the Improved PointNet++
作者:Chang, Kaixuan;Xu, Xingmei;Li, Qifeng;Ma, Weihong;Xue, Xianglong;Xu, Zhankang;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Ma, Weihong;Qi, Xiangyu;Xue, Xianglong;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Ma, Weihong;Xue, Xianglong;Li, Mingyu;Guo, Yuhang;Meng, Rui;Li, Qifeng;Xu, Zhankang
关键词:point cloud segmentation; PointNet++; 3D point cloud processing; SoftPool