Salt-Tolerant PGPR Confer Salt Tolerance to Maize Through Enhanced Soil Biological Health, Enzymatic Activities, Nutrient Uptake and Antioxidant Defense

文献类型: 外文期刊

第一作者: Shabaan, Muhammad

作者: Shabaan, Muhammad;Asghar, Hafiz Naeem;Zahir, Zahir Ahmad;Zhang, Xiu;Sardar, Muhammad Fahad;Li, Hongna

作者机构:

关键词: rhizobacteria; maize; salinity stress; enzymes; nutrient acquisition

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:6.064; 五年影响因子:6.843 )

ISSN:

年卷期: 2022 年 13 卷

页码:

收录情况: SCI

摘要: Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can improve soil enzyme activities, which are indicators of the biological health of the soil, and can overcome the nutritional imbalance in plants. A pot trial was executed to evaluate the effect of inoculation of different salt-tolerant PGPR strains in improving soil enzyme activities. Three different salinity levels (original, 5, and 10 dS m(-1)) were used and maize seeds were coated with the freshly prepared inocula of ten different PGPR strains. Among different strains, inoculation of SUA-14 (Acinetobacter johnsonii) caused a maximum increment in urease (1.58-fold), acid (1.38-fold), and alkaline phosphatase (3.04-fold) and dehydrogenase (72%) activities as compared to their respective uninoculated control. Acid phosphatase activities were found to be positively correlated with P contents in maize straw (r = 0.96) and grains (r = 0.94). Similarly, a positive correlation was found between alkaline phosphatase activities and P contents in straw (r = 0.77) and grains (r = 0.75). In addition, urease activities also exhibited positive correlation with N contents in maize straw (r = 0.92) and grains (r = 0.91). Moreover, inoculation of Acinetobacter johnsonii caused a significant decline in catalase (39%), superoxide dismutase (26%) activities, and malondialdehyde contents (27%). The PGPR inoculation improved the soil's biological health and increased the uptake of essential nutrients and conferred salinity tolerance in maize. We conclude that the inoculation of salt-tolerant PGPR improves soil enzyme activities and soil biological health, overcomes nutritional imbalance, and thereby improves nutrient acquisition by the plant under salt stress.

分类号:

  • 相关文献
作者其他论文 更多>>