Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species

文献类型: 外文期刊

第一作者: Li, Shu-Fen

作者: Li, Shu-Fen;Yang, Long-Long;Lan, Li-Na;Zhang, Xin-Yu;Wang, Li-Ying;Zhang, Yu-Lan;Li, Ning;Deng, Chuan-Liang;Gao, Wu-Jun;She, Hong-Bing;Qian, Wei

作者机构:

关键词: evolutionary dynamics; LTR-retrotransposons; Cucurbitaceae species; genome structure; gene expression

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:6.208; 五年影响因子:6.628 )

ISSN:

年卷期: 2022 年 23 卷 17 期

页码:

收录情况: SCI

摘要: Long terminal repeat (LTR)-retrotransposons (LTR-RTs) comprise a major portion of many plant genomes and may exert a profound impact on genome structure, function, and evolution. Although many studies have focused on these elements in an individual species, their dynamics on a family level remains elusive. Here, we investigated the abundance, evolutionary dynamics, and impact on associated genes of LTR-RTs in 16 species in an economically important plant family, Cucurbitaceae. Results showed that full-length LTR-RT numbers and LTR-RT content varied greatly among different species, and they were highly correlated with genome size. Most of the full-length LTR-RTs were amplified after the speciation event, reflecting the ongoing rapid evolution of these genomes. LTR-RTs highly contributed to genome size variation via species-specific distinct proliferations. The Angela and Tekay lineages with a greater evolutionary age were amplified in Trichosanthes anguina, whereas a recent activity burst of Reina and another ancient round of Tekay activity burst were examined in Sechium edule. In addition, Tekay and Retand lineages belonging to the Gypsy superfamily underwent a recent burst in Gynostemma pentaphyllum. Detailed investigation of genes with intronic and promoter LTR-RT insertion showed diverse functions, but the term of metabolism was enriched in most species. Further gene expression analysis in G. pentaphyllum revealed that the LTR-RTs within introns suppress the corresponding gene expression, whereas the LTR-RTs within promoters exert a complex influence on the downstream gene expression, with the main function of promoting gene expression. This study provides novel insights into the organization, evolution, and function of LTR-RTs in Cucurbitaceae genomes.

分类号:

  • 相关文献
作者其他论文 更多>>