Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions

文献类型: 外文期刊

第一作者: Wang, Jie

作者: Wang, Jie;Ye, Wuwei;Yin, Zujun;Wang, Jie;Ye, Wuwei;Yin, Zujun;Wu, Honghong;Wang, Yichao;Ye, Wuwei;Yin, Zujun;Kong, Xiangpei

作者机构:

关键词: abiotic stress; agricultural; defense system; nanoparticles; nanotechnology; oxidative stress; reactive oxygen species; toxicity

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:11.4; 五年影响因子:10.1 )

ISSN: 1672-9072

年卷期: 2024 年

页码:

收录情况: SCI

摘要: By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.

分类号:

  • 相关文献
作者其他论文 更多>>