Transcriptomics and Metabolomics Analysis Provides Insight into Leaf Color and Photosynthesis Variation of the Yellow-Green Leaf Mutant of Hami Melon (Cucumis melo L.)
文献类型: 外文期刊
第一作者: Han, Hongwei
作者: Han, Hongwei;Chen, Xianjun;Sun, Xiaoxia;Liu, Huiying;Han, Hongwei;Liu, Huifang;Wang, Qiang;Zhuang, Hongmei;Wang, Baike;Wang, Juan;Tang, Yaping;Wang, Hao;Zhou, Yuan;Ling, Qihua;Zhang, Huijun
作者机构:
关键词: Hami melon mutant; chloroplast; photosynthesis; photosynthetic carbon assimilation; ROS; transcriptome; metabolism
期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )
ISSN:
年卷期: 2023 年 12 卷 8 期
页码:
收录情况: SCI
摘要: Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C-4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways.
分类号:
- 相关文献
作者其他论文 更多>>
-
Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
作者:Hu, Jiahui;Yu, Qinghui;Hu, Jiahui;Wang, Juan;Muhammad, Tayeb;Yang, Tao;Li, Ning;Yang, Haitao;Yu, Qinghui;Wang, Baike
关键词:tomato; fruit ripening; metabolome; transcriptome; carotenoids; lycopene; ethenyl
-
Comprehensive genomic characterization and expression analysis of calreticulin gene family in tomato
作者:Muhammad, Tayeb;Yang, Tao;Wang, Baike;Yang, Haitao;Wang, Juan;Yu, Qinghui;Tuerdiyusufu, Diliaremu
关键词:tomato; CRT gene family; endoplasmic reticulum; bioinformatics; abiotic stress; gene expression
-
Long-term Application of Agricultural Amendments Regulate Hydroxyl Radicals Production during Oxygenation of Paddy Soils
作者:Chen, Ning;Huang, Danyu;Liu, Xiantang;Zhou, Dongmei;Chen, Ning;Zeng, Yu;Wu, Tongliang;Fang, Guodong;Wang, Yujun;Wang, Juan;Liu, Guangxia;Gao, Yan
关键词:agricultural amendment; hydroxyl radicals; soil aggregate fractionation, paddy soil; organic contaminantattenuation
-
Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry
作者:Wang, Juan;Wang, Juan;Wei, Wei;Chen, Zi-Yun;Xiong, Tao;Xia, Luo-Yuan;Jiang, Jia-Fu;Zhu, Dai-Yun;Jia, Na;Cao, Wu-Chun;Du, Li-Feng;Zhang, Ming-Zhu;Xia, Luo-Yuan;Chen, Zi-Yun;Zhang, Xu;Li, Wen-Jun;Wang, Zhen-Fei
关键词:
-
Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream
作者:Hei, Xue;Liu, Zhe;Li, Shanshan;Wu, Chao;Jiao, Bo;Hu, Hui;Ma, Xiaojie;Zhu, Jinjin;Wang, Qiang;Shi, Aimin;Adhikari, Benu
关键词:Pickering emulsion; Freeze -thaw stability; Plant -based ice cream
-
Two unprecedented 2-(2-phenethyl)chromone dimers from red soil agarwood of Aquilaria crassna
作者:Chai, Hong-Xing;Jiang, Bei;Dai, Hao-Fu;Chai, Hong-Xing;Wang, Hao;Zeng, Jun;Dong, Wen-Hua;Mei, Wen-Li;Li, Wei;Dai, Hao-Fu;Wang, Hao;Zeng, Jun;Dong, Wen-Hua;Mei, Wen-Li;Li, Wei;Dai, Hao-Fu
关键词:Aquilaria crassna; Red soil agarwood; 2-(2-Phenylethyl)chromone dimers; Anti-inflammatory activity
-
Aquilaria sinensis: An Upstart Resource for Cucurbitacin Production Offers Insights into the Origin of Plant Bitter (Bi) Gene Clusters
作者:Ding, Xupo;Yang, Zhuo;Wang, Hao;Zeng, Jun;Dai, Haofu;Mei, Wenli;Ding, Xupo;Wang, Hao;Zeng, Jun;Dai, Haofu;Mei, Wenli;Ding, Xupo;Wang, Hao;Zeng, Jun;Dai, Haofu;Mei, Wenli
关键词:cucurbitacin; Aquilaria sinensis; Begonia; Bi gene; bitter gene cluster; origin; evolution