Identification and analysis of flavonoid pathway genes in responsive to drought and salinity stress in Medicago truncatula
文献类型: 外文期刊
第一作者: He, Chunfeng
作者: He, Chunfeng;Du, Wenxuan;Ma, Zelong;Jiang, Wenbo;Pang, Yongzhen;Ma, Zelong
作者机构:
关键词: Medicago truncatula; Flavonoid compounds; Flavonoid pathway genes; Abiotic stress
期刊名称:JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:4.0; 五年影响因子:4.1 )
ISSN: 0176-1617
年卷期: 2024 年 302 卷
页码:
收录情况: SCI
摘要: Flavonoid compounds are widely present in various organs and tissues of different plants, playing important roles when plants are exposed to abiotic stresses. Different types of flavonoids are biosynthesized by a series of enzymes that are encoded by a range of gene families. In this study, a total of 63 flavonoid pathway genes were identified from the genome of Medicago truncatula. Gene structure analysis revealed that they all have different gene structure, with most CHS genes containing only one intron. Additionally, analysis of promoter sequences revealed that many cis-acting elements responsive to abiotic stress are located in the promoter region of flavonoid pathway genes. Furthermore, analysis on M. truncatula gene chip data revealed significant changes in expression level of most flavonoid pathway genes under the induction of salt or drought treatment. qRT-PCR further confirmed significant increase in expression level of several flavonoid pathway genes under NaCl and mannitol treatments, with CHS1, CHS9, CHS10, F3 ' H4 and F3 ' H5 genes showing significant up-regulation, indicating they are key genes in response to abiotic stress in M. truncatula. In summary, our study identified key flavonoid pathway genes that were involved in salt and drought response, which provides important insights into possible modification of flavonoid pathway genes for molecular breeding of forage grass with improved abiotic resistance.
分类号:
- 相关文献
作者其他论文 更多>>
-
Over-expression of Medicago Acyl-CoA-binding 2 genes enhance salt and drought tolerance in Arabidopsis
作者:Du, Wenxuan;Huang, Haijun;Kong, Weiye;Jiang, Wenbo;Pang, Yongzhen;Kong, Weiye
关键词:Medicago truncatula; Medicago sativa; ACBP genes; Abiotic stresses; Expression profiling; Transgenic Arabidopsis
-
The APETALA2-MYBL2 module represses proanthocyanidin biosynthesis by affecting formation of the MBW complex in seeds of Arabidopsis thaliana
作者:Jiang, Wenbo;Li, Qian;Zhang, Jin;Pang, Yongzhen;Yin, Qinggang;Liu, Jinyue;Su, Xiaojia;Han, Xiaoyan
关键词:
-
The HD-ZIP IV transcription factor GLABRA2 acts as an activator for proanthocyanidin biosynthesis in Medicago truncatula seed coat
作者:Gu, Zhiqun;Zhou, Xin;Li, Shuangshuang;Xu, Yiteng;Zhang, Xue;Zhang, Jing;Jiang, Hongjiao;Lu, Zhichao;Wang, Hongfeng;Han, Lu;Zhou, Chuanen;Pang, Yongzhen;Zhang, Xue;Wang, Hongfeng;Bai, Shiqie
关键词:anthocyanidin reductase; HD-ZIP IV transcription factor; GLABRA2; Medicago truncatula; proanthocyanidin; seed coat
-
An inducible CRISPR activation tool for accelerating plant regeneration
作者:Zhang, Cuimei;Xu, Yujun;Zhou, Yangyan;Liu, Qikun;Tang, Yajun;Yuan, Haidi;Zhou, Junhui;Tang, Shanjie;Chen, Lei;Li, Tong;Zhang, Shuaibin;Deng, Xian;Cao, Xiaofeng;Song, Xianwei;Wang, Jianli;Wen, Hongyu;Jiang, Wenbo;Pang, Yongzhen;Deng, Xian;Song, Xianwei
关键词:inducible CRISPR activation; morphogenic gene; genetic transformation; plant regeneration
-
Overexpression of MsNIP2 improves salinity tolerance in Medicago sativa
作者:Kong, Weiye;Luo, Yijing;Yang, Guofeng;Kong, Weiye;Huang, Haijun;Du, Wenxuan;Yi, Dengxia;Pang, Yongzhen;Jiang, Zhihu
关键词:Medicago sativa; NIPs; MsNIP2; Overexpression; Salt tolerance
-
Medicago truncatula β-glucosidase 17 contributes to drought and salt tolerance through antioxidant flavonoid accumulation
作者:Du, Wenxuan;Li, Qian;Jiang, Wenbo;Pang, Yongzhen;Yang, Junfeng;Yang, Junfeng
关键词:abioitc stress; enzyme; flavonoid 7-O-glucosides; overexpressioin; Tnt-1 mutant
-
A novel flavonoid prenyltransferase gene PcPT11 with broad substrate promiscuity in Psoralea corylifolia L.
作者:Wang, Yuanyue;Luo, Yanjiao;Zhang, Yixin;Xu, Chaoqun;Yao, Yu;Gu, Jiajun;Ding, Gang;Suo, Fengmei;Shen, Guoan;Guo, Baolin;Peng, Yude;Pang, Yongzhen;Jia, Shangang
关键词:Psoralea corylifolia L; Prenyltransferases; Flavonoids; Prenylation; PcPT11