Novel Eel Skin Fibroblast Cell Line: Bridging Adherent and Suspension Growth for Aquatic Applications Including Virus Susceptibility

文献类型: 外文期刊

第一作者: Zheng, Zaiyu

作者: Zheng, Zaiyu;Chen, Bin;Liu, Xiaodong;Chi, Hongshu;Chen, Xiuxia;Pan, Ying;Gong, Hui;Guo, Rui

作者机构:

关键词: Anguilla anguilla; suspension growth; reversible adherent-suspension culture system; Anguillid herpesvirus; red-spotted grouper nervous necrosis virus

期刊名称:BIOLOGY-BASEL ( 影响因子:3.5; 五年影响因子:4.0 )

ISSN:

年卷期: 2024 年 13 卷 12 期

页码:

收录情况: SCI

摘要: Suspension growth can greatly increase the cell density and yield of cell metabolites. To meet the requirements of aquatic industries, a culture model derived from Anguilla anguilla skin was developed using the explant outgrowth and enzyme-digesting passaging methods. These cells were kept in vitro continuously for over 12 months and subcultured 68 times. This heteroploid cell line, designated as ES, can naturally adapt to adherent and suspension growth reversibly under certain temperatures, serum percentages, and inoculum densities, without the need for any microcarriers or special medium additives. The ES cells can continue being highly productive under a temperature range of 15-37 degrees C and a serum percentage ranging from 3 to 15%. An inoculum density higher than 5 x 105 cellsmL-1 is necessary for the ES cells to turn into suspension efficiently. The green fluorescent protein (GFP) reporter gene was successfully expressed in the ES cells. The ES cells demonstrated susceptibility to Anguillid herpesvirus (AngHV) and red-spotted grouper nervous necrosis virus (RGNNV). ES is the first natural suspension growth model of aquatic origin; it does not require the processes of suspension domestication and carrier dissolution, making it a promising and cost-effective model for vaccine production, bio-pharmaceutical manufacturing, and cellular agriculture.

分类号:

  • 相关文献
作者其他论文 更多>>