Dissection of genetic effects of quantitative trait loci (QTL) in transgenic cotton

文献类型: 外文期刊

第一作者: Yongshan Zhang

作者: Yongshan Zhang;Shuxun Yu;Xiangmo Guo;Zhiwei Wang;Qinglian Wang;Li Chu

作者机构:

关键词: quantitative trait loci (QTL);genetic effects;modified additive-dominance model;QTL mutant

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN: 0014-2336

年卷期: 2008 年 159 卷 1-2 期

页码:

收录情况: SCI

摘要: When alien DNA inserts into the cotton genome in a multicopy manner, several quantitative trait loci (QTLs) in the cotton genome are disrupted; these are called dQTL in this study. A transgenic mutant line is near-isogenic to its recipient, which is divergent for the dQTL from the remaining QTLs. Therefore, a set of data from a transgenic QTL line mutated by Agrobacterium-mediated transformation (30074), its recipient and their F1 hybrids, and three elite lines were analyzed under a modified additive-dominance model with genotype x environment interactions in three different environments to separate the genetic effects due to dQTL from whole-genome effects. Our result showed that dQTL had significant additive effects on lint percentage, boll weight, and boll number per square meter, while it had little genetic association with fiber traits, seed cotton yield, and lint yield. The dQTL in 30074 significantly increased lint percentage and boll number, while significantly decreasing boll weight, having little effect on fibre traits, while those from the recipient and three elite lines showed significant genetic effects on lint percentage. In addition, the remaining QTL other than dQTL had significant additive effects on seed cotton yield, fruiting branch number, uniformity index, micronaire, and short fibre index, and significant dominance effects on seed cotton yield, lint yield, and boll number per square meter. The additive and dominance effects under homozygous and heterozygous conditions for each line are also predicted in this study.

分类号:

  • 相关文献

[1]Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum x Gossypium barbadense. Yuzhen Shi,Baocai Zhang,Aiying Liu,Wentan Li,Junwen Li,Quanwei Lu,Zhen Zhang,Shaoqi Li,Wankui Gong,Haihong Shang,Juwu Gong,Tingting Chen,Qun Ge,Tao Wang,Heqin Zhu,Zhi Liu,Youlu Yuan. 2016

[2]Progress of genome wide association study in domestic animals. Zhang, Hui,Wang, Zhipeng,Wang, Shouzhi,Li, Hui,Zhang, Hui,Wang, Zhipeng,Wang, Shouzhi,Li, Hui. 2012

[3]Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Shen, X,Zhou, M,Lu, W,Ohm, H. 2003

[4]Detection of Drought-Related Loci in Rice at Reproductive Stage Using Selected Introgressed Lines. Chen Man-yuan,Shi Ying-yao,Yao Da-nian,Chen Man-yuan,Fu Bin-ying,Xu Jian-long,Zhu Ling-hua,Gao Yong-ming,Li Zhi-kang,Ali, J.,Zhao Ming-fu,Jiang Yun-zhu,Li Zhi-kang. 2011

[5]Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308. Liang, Yongshu,Zhan, Xiaodeng,Gao, Zhiqiang,Lin, Zechuan,Yang, Zhanlie,Zhang, Yinxin,Shen, Xihong,Cao, Liyong,Cheng, Shihua,Liang, Yongshu,Zhan, Xiaodeng,Gao, Zhiqiang,Lin, Zechuan,Yang, Zhanlie,Zhang, Yinxin,Shen, Xihong,Cao, Liyong,Cheng, Shihua. 2012

[6]Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Zang JinPing,Sun Yong,Wang Yun,Yang Jing,Li Fang,Zhou YongLi,Zhu LingHua,Xu JianLong,Jessica, Reys,Mohammadhosein, Fotokian,Li ZhiKang.

[7]Mining of Candidate Maize Genes for Nitrogen Use Efficiency by Integrating Gene Expression and QTL Data. Liu, Ruixiang,Zhang, Hao,Zhao, Pu,Zhang, Zuxin,Liu, Ruixiang,Zhang, Zuxin,Zheng, Yonglian,Liang, Wenke,Tian, Zhigang.

[8]Genome-wide association study of resistance to rough dwarf disease in maize. Weng, Jianfeng,Zhang, Degui,Zhang, Xiaocong,Shi, Liyu,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Ci, Xiaoke,Bai, Li,Li, Xinhai,Zhang, Shihuang,Yang, Xiaoyan,Meng, Qingchang,Yuan, Jianhua,Guo, Xinping.

[9]Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Wang, Peng,Zhou, Guilin,Cui, Kehui,Yu, Sibin,Wang, Peng,Zhou, Guilin,Cui, Kehui,Li, Zhikang,Yu, Sibin,Li, Zhikang.

[10]Importance of over-dominance as the genetic basis of heterosis in rice. Zhuang, JY,Fan, YY,Wu, JL,Xia, YW,Zheng, KL.

[11]Mapping Quantitative Trait Loci for Post-Anthesis Dry Matter Accumulation in Wheat. Su, Jun-Ying,Tong, Yi-Ping,Liu, Quan-You,Li, Bin,Jing, Rui-Lian,Li, Ji-Yun,Li, Zhen-Sheng.

[12]Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. Xihua Li,Yu, Jiwen,Yu, Shuxun,Zhang, Jinfa,Man Wu,Guoyuan Liu,Wenfeng Pei,Honghong Zhai,Jiwen Yu,Jinfa Zhang,Shuxun Yu. 2017

[13]Identification of quantitative trait loci across interspecific F-2, F-2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Yu, Jiwen,Yu, Shuxun,Wu, Man,Zhai, Honghong,Li, Xingli,Fan, Shuli,Song, Meizhen,Gore, Michael,Zhang, Jinfa.

[14]Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs. Bian, Jian Min,Jiang, Ling,Liu, Ling Long,Wei, Xiang Jin,Xiao, Yue Hua,Zhang, Lu Jun,Zhao, Zhi Gang,Wan, Jian Min,Zhai, Hu Qu,Wan, Jian Min. 2010

[15]Simultaneous improvement and genetic dissection of grain yield and its related traits in a backbone parent of hybrid rice (Oryza sativa L.) using selective introgression. Zhang, Hongjun,Wang, Hui,Qian, Yiliang,Shi, Yingyao,Zhu, Linghua,Gao, Yongming,Li, Zhikang,Qian, Yiliang,Shi, Yingyao,Xia, Jiafa,Li, Zefu,Ali, Jauhar.

[16]Mapping QTLs for heading synchrony in a doubled haploid population of rice in two environments. Ma, Liangyong,Yang, Changdeng,Zeng, Dali,Cai, Jing,Li, Ximing,Ji, Zhijuan,Qian, Qian,Ma, Liangyong,Xia, Yingwu,Bao, Jinsong,Ma, Liangyong,Xia, Yingwu,Bao, Jinsong. 2009

[17]Mapping of QTLs for eating and cooking quality-related traits in rice (Oryza sativa L.). Leng, Yujia,Yang, Yaolong,Hu, Shikai,Su, Yan,Huang, Lichao,Wang, Lan,Zheng, Tingting,Zhang, Guanghen,Hu, Jiang,Gao, Zhenyu,Guo, Longbiao,Qian, Qian,Zeng, Dali,Xue, Dawei. 2014

[18]Genetic Dissection of Leaf-related Traits using 156 Chromosomal Segment Substitution Lines. Liu, Xi,Liu, Linglong,Xiao, Yinhui,Liu, Shijia,Tian, Yunlu,Chen, Liangming,Wang, Zhiquan,Jiang, Ling,Zhao, Zhigang,Wan, Jianmin,Wan, Jianmin.

[19]Linkage map construction and QTL mapping for cold tolerance in Oryza rufipogon Griff. at early seedling stage. Luo Xiang-dong,Zhao Jun,Dai Liang-fang,Zhang Fan-tao,Zhou Yi,Xie Jian-kun,Wan Yong. 2016

[20]QTL mapping of dehiscence length at the basal part of thecae related to heat tolerance of rice (Oryza sativa L.). Zhao, Ling,Zhao, Chun-Fang,Zhou, Li-Hui,Lin, Jing,Zhao, Qing-Yong,Zhu, Zhen,Chen, Tao,Yao, Shu,Wang, Cai-Lin,Zhao, Ling,Zhao, Chun-Fang,Zhou, Li-Hui,Lin, Jing,Zhao, Qing-Yong,Zhu, Zhen,Chen, Tao,Yao, Shu,Hasegawa, Toshihiro,Matsui, Tsutomu.

作者其他论文 更多>>