The silicon efflux transporter BEC1 is essential for bloom formation and stress tolerance in cucumber

文献类型: 外文期刊

第一作者: Xia, Changxuan

作者: Xia, Changxuan;Mao, Aijun;Yin, Shanshan;Teng, Huitong;Jin, Caijiao;Zhang, Jian;Li, Ying;Dong, Rui;Wen, Changlong;Xia, Changxuan;Mao, Aijun;Zhang, Jian;Wen, Changlong;Xia, Changxuan;Mao, Aijun;Zhang, Jian;Wen, Changlong;Xia, Changxuan;Mao, Aijun;Zhang, Jian;Wen, Changlong;Wu, Tao

作者机构:

关键词: bloomless cucumber; graft; Si transporter; silicon; stress

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:9.3; 五年影响因子:10.8 )

ISSN: 1672-9072

年卷期: 2025 年 67 卷 7 期

页码:

收录情况: SCI

摘要: Silicon (Si) plays a crucial role in plant growth, development, and stress tolerance. However, in some consumable plant products, such as fruits, Si deposition leads to the formation of a white powdery layer known as bloom, which diminishes glossiness and consumer appeal. Despite its significance, the genetic basis of bloom formation remains largely unexplored. Here, we identified a unique cucumber backbone parent line exhibiting bloomless fruit, which was designated blooml ess cucumber 1 (bec1). Map-based cloning of the bec1 locus revealed that BEC1, harboring a natural C-to-T variation at the 754th base of its coding region, is a strong candidate gene for the bloomless trait. Functional validation through gene-editing mutants and BEC1::BEC1-GFP transgenic lines confirmed that BEC1, encoding a Si efflux transporter, is responsible for bloom formation. Mutation of BEC1 impaired Si uptake, thereby preventing the deposition of Si on the surface of glandular trichomes and resulting in bloomless fruits. Additionally, Si deficiency in BEC1 mutants compromised resistance to Corynespora cassiicola and chilling stress. Interestingly, grafting bec1 scions onto bloom rootstocks restored the Si accumulation and stress resistance, while maintaining bloomless phenotype. Overall, our findings elucidate the role of BEC1 in bloom formation and provide a valuable genetic target for breeding bloomless cucumber with enhanced stress resilience.

分类号:

  • 相关文献
作者其他论文 更多>>