Identification and Characterization of a Pear Chlorotic Leaf Spot-Associated Virus, a Novel Emaravirus Associated with a Severe Disease of Pear Trees in China
文献类型: 外文期刊
第一作者: Liu, Huazhen
作者: Liu, Huazhen;Wang, Guoping;Yang, Zuokun;Wang, Yanxiang;Zhang, Zhe;Li, Longhui;Waqas, Muhammad;Hong, Ni;Liu, Huazhen;Wang, Guoping;Hong, Ni;Hong, Jian;Zhang, Jinguo;Xu, Lei;Qi, Liying
作者机构:
关键词: chlorotic leaf spot; detection; Emaravirus; etiology; fruit; genome; Pyrus pyrifolia; tree fruit; viruses and viroids
期刊名称:PLANT DISEASE ( 影响因子:4.438; 五年影响因子:4.7 )
ISSN: 0191-2917
年卷期: 2020 年 104 卷 11 期
页码:
收录情况: SCI
摘要: Pear chlorotic leaf spot (PCLS) is a recently emerged disease of commercially cultivated sandy pear (Pyrus pyrifolia) trees in central and southern China. By integrating high-throughput sequencing and conventional Sanger sequencing of reverse-transcription (RT)-PCR products, a novel emaravirus infecting pear trees was identified and molecularly characterized. The virus was provisionally named pear chlorotic leaf spot-associated virus (PCLSaV). PCLSaV shows the typical molecular features of members of the genus Emaravirus in the family Fimoviridae. It has a genome composed of at least five negative-sense RNA segments, with each containing a single open reading frame and two complementary 13-nucleotide stretches at the 5' and 3' termini. PCLSaV shows a close phylogenetic relationship with recognized emaraviruses but forms a separate Glade. Moreover, double-membrane-bound bodies were observed in PCLSaV-infected tissues and in extracts of PCLSaV-infected leaves. For the first time, our study revealed the profile distribution of viral RNA reads from the RNA-seq libraries of three samples along the RNA1 to RNA5 of an emaravirus. Field surveys combined with specific RT-PCR assays revealed the presence of PCLSaV in almost all PCLS-diseased pear samples, strongly supporting the association of the virus with the PCLS disease. This study revealed the first emaravirus infecting pear trees and its association with a severe pear chlorotic leaf disease.
分类号:
- 相关文献
作者其他论文 更多>>
-
An insight into heat stress response and adaptive mechanism in cotton
作者:Dev, Washu;Sultana, Fahmida;He, Shoupu;Waqas, Muhammad;Hu, Daowu;Aminu, Isah Mansur;Geng, Xiaoli;Du, Xiongming;Hu, Daowu;Du, Xiongming
关键词:Heat stress; Cotton breeding; Genomics; Physiological and biochemical response; Tolerance mechanisms
-
Visualizing plant intracellular inorganic orthophosphate distribution
作者:Guo, Meina;Ruan, Wenyuan;Li, Ruili;Xu, Lei;Zhang, Qianqian;Ren, Jianhao;Yi, Keke;Guo, Meina;Hani, Sahar;David, Pascale;Nussaume, Laurent;Zheng, Bingsong
关键词:
-
Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst
作者:Liu, Yunliang;Jabeen, Sobia;Liu, Naiyun;Liu, Yixian;Cheng, Yuanyuan;Li, Yaxi;Yu, Jingwen;Wu, Xin;Li, Haitao;Zheng, Zhiyu;Yan, Nina;Xu, Lei;Zheng, Zhiyu;Yan, Nina;Xu, Lei
关键词:mechanochemical route; magnetic biochar; electron transfer; nitrate; ammonia
-
A genome-wide study of the lipoxygenase gene families in Medicago truncatula and Medicago sativa reveals that MtLOX24 participates in the methyl jasmonate response
作者:Xu, Lei;Zhu, Xiaoxi;Liu, Yajiao;Sod, Bilig;Li, Mingna;Chen, Lin;Kang, Junmei;Yang, Qingchuan;Long, Ruicai;Xu, Lei;Yang, Qingchuan;Yi, Fengyan
关键词:Medicago; Lipoxygenase; Methyl jasmonate; Arabidopsis thaliana; Overexpression
-
Hepatitis E virus infects human testicular tissue and Sertoli cells
作者:Liu, Tianxu;Zhang, Yun;Luo, Yong;He, Qiyu;Wang, Lin;Liu, Tianxu;Zhang, Yun;Luo, Yong;He, Qiyu;Wang, Lin;Cao, Yalei;Weng, Jiaming;Jin, Zirun;Zhang, Zhe;Cao, Yalei;Weng, Jiaming;Jin, Zirun;Zhang, Zhe;Gao, Songzhan;Yang, Yuzhuo;Jiang, Hui;Zhang, He;Xia, Changyou;Yin, Xin
关键词:Hepatitis E virus; chronic hepatitis E; extrahepatic replication; human testis; Sertoli cells
-
Morphological Innovation Drives Sperm Release in Bryophytes
作者:Zhang, Xinxin;Bian, Ang;Yang, Junbo;Liang, Ye;Zhang, Zhe;Yan, Meng;Yuan, Siqi;Zhang, Qun
关键词:antheridium burst; cell geometry; cell wall mechanics; hydrostatic pressure; Marchantia polymorpha; Physcomitrium patens; sperm release
-
Soil water movement may regulate soil water consumption and improve cotton yields under different cotton cropping systems
作者:Wu, Fengqi;Guo, Simeng;Huang, Weibin;Wang, Zhanbiao;Feng, Lu;Li, Yabing;Han, Yingchun;Wang, Zhanbiao;Feng, Lu;Wang, Guoping;Li, Xiaofei;Lei, Yaping;Zhi, Xiaoyu;Xiong, Shiwu;Jiao, Yahui;Xin, Minghua;Yang, Beifang;Li, Yabing;Wu, Fengqi;Wu, Fengqi;Guo, Simeng;Li, Yabing;Huang, Weibin;Wang, Zhanbiao
关键词:Cotton; Yield; Soil water movement; Soil water consumption; Planting system