The degradation dynamics and rapid detection of thiacloprid and its degradation products in water and soil by UHPLC-QTOF-MS
文献类型: 外文期刊
第一作者: Chen, Kaiying
作者: Chen, Kaiying;Liu, Xingang;Wu, Xiaohu;Xu, Jun;Dong, Fengshou;Zheng, Yongquan
作者机构:
关键词: Thiacloprid; Hydrolysis; Photolysis; Soil degradation; Degradation products
期刊名称:CHEMOSPHERE ( 影响因子:7.086; 五年影响因子:6.956 )
ISSN: 0045-6535
年卷期: 2021 年 263 卷
页码:
收录情况: SCI
摘要: Thiacloprid is a neonicotinoid insecticide used to control sucking and chewing insects of fruits and vegetables. Hydrolysis, photolysis of thiacloprid in aqueous solutions, and soil degradation of three typical types of soil in China were studied. UHPLC-QTOF/MS was used to acquire high-resolution mass spectrometry information of thiacloprid's degradation products in water and soil samples, and the UNIFI platform with integrated data processing function was used to find and identify degradation products. The degradation kinetics of thiacloprid was determined. Six transformation products (M271, M287, M269, M295, M279, M267) were found after the data processing workflow in the UNIFI platform by using the raw MSE data. The structure of putative transformation products can be inferred based on the accurate mass of fragment ions and the automated spectral interpretation tools in the UNIFI platform. The structure of M271 was validated to be thiacloprid amide by comparing the ESI-MS2 fragment ions in soil samples and thiacloprid amide standard. The TrendPlot function of UNIFI was used to demonstrate the kinetics of the transformation products. Reduction, hydrolysis, oxidation are the main reactions of thiacloprid in three tested soil in China and buffer solutions. This study provided a reference for the rapid identification of the transformation products of other pesticides in specific environmental conditions. (C) 2020 Elsevier Ltd. All rights reserved.
分类号:
- 相关文献
作者其他论文 更多>>
-
Interpretation of the effects of rumen acidosis on the gut microbiota and serum metabolites in calves based on 16S rDNA sequencing and non-target metabolomics
作者:Wu, Fanlin;Wu, Xiaohu;Ji, Peng;Yang, Haochi;Zhu, Xiaopeng
关键词:calves; rumen acidosis; gut microbiota; serum metabolites; correlation analysis
-
Optimizing Analysis Methods: Rapid and Accurate Determination of Cuaminosulfate Residues with LC-MS/MS Based on Box-Behnken Design Study
作者:Wang, Yuzhu;Zhang, Lan;Mao, Liangang;Zhu, Lizhen;Zheng, Yongquan;Liu, Xingang;Wu, Chi;He, Mingyuan;Wang, Yuzhu
关键词:cuaminosulfate; dissipation; terminal residues; watermelon; soil; LC-MS/MS
-
Residue changes, degradation, processing factors and their relation between physicochemical properties of pesticides in peanuts during multiproduct processing
作者:Cui, Kai;Wang, Jian;Guan, Shuai;Liang, Jingyun;Fang, Liping;Ding, Ruiyan;Li, Teng;Dong, Zhan;Ma, Guoping;Wu, Xiaohu;Zheng, Yongquan
关键词:Degradation; Health; Peanut; Pesticide; Treatment
-
Insights into the role of endogenous humic acid on antibiotics bioadsorption process in wastewater: Mechanisms and potential implications
作者:Lin, Qiang;Luo, Ancheng;Yu, Chisheng;Chen, Kaiying;Hamid, Yasir;Liang, Zhiwei;Wang, Yunlong;Yang, Wenchen
关键词:Humic acids; Ofloxacin; Ciprofloxacin; Bioadsorption; Wastewater treatment
-
Comparative uptake, translocation and metabolism of phenamacril in crops under hydroponic and soil cultivation conditions
作者:Chang, Jinhe;Gao, Kang;Li, Runan;Dong, Fengshou;Li, Yuanbo;Li, Runan;Li, Yuanbo;Chang, Jinhe;Zheng, Yongquan;Zhang, Qingming
关键词:Phenamacril; Accumulation; Translocation; Metabolism; Plant species differences; Cultivation conditions
-
From Water to Water: Insight into the Translocation of Pesticides from Plant Rhizosphere Solution to Leaf Guttation and the Associated Ecological Risks
作者:Xia, Beiqi;Wang, Sijia;Li, Runan;Dong, Fengshou;Li, Yuanbo;Zheng, Yongquan
关键词:plant guttation; pesticides; neonicotinoids; plant uptake; translocation; ecological risks
-
Uptake and Biotransformation of Guvermectin in Three Crops after In Vivo and In Vitro Exposure
作者:Shi, Yuan;Xiang, Wensheng;Wang, Xiangjing;Shi, Yuan;Pan, Xinglu;Wu, Xiaohu;Xu, Jun;Xiang, Wensheng;Zheng, Yongquan;Dong, Fengshou
关键词:biopesticide; guvermectin; uptake; biotransformation; toxicity