Identification of QTL for resistance to leaf blast in foxtail millet by genome re-sequencing analysis

文献类型: 外文期刊

第一作者: Tian, Bohong

作者: Tian, Bohong;Zhang, Lixin;Liu, Yanli;Wang, Wei;Zhang, Yue;Wu, Peipei;Li, Hongjie

作者机构:

期刊名称:THEORETICAL AND APPLIED GENETICS ( 影响因子:5.699; 五年影响因子:5.565 )

ISSN: 0040-5752

年卷期: 2021 年 134 卷 2 期

页码:

收录情况: SCI

摘要: Key message Three QTL for resistance to leaf blast were identified on chromosomes 1, 2, and 8 of the foxtail millet cultivar Yugu 5. Leaf blast disease of foxtail millet (Setaria italica) is caused by Pyricularia spp., can infect all the aboveground parts of plants, and is the most frequently observed blast disease in China. Lack of information on genetic control of disease resistance impedes developing leaf blast-resistant cultivars. An F-6 recombinant inbred line (RIL) population from the cross Yugu 5 x Jigu 31 was phenotyped for its reactions to leaf blast in six field trials in the naturally diseased nurseries. An ultra-density genetic linkage map was constructed using 35,065 single nucleotide polymorphism (SNP) markers generated by sequencing of the RIL population. Three QTL, QLB-czas1, QLB-czas2, and QLB-cazas8, were detected in the genomic intervals of 276.6 kb, 1.62 Mb, and 1.75 Mb on chromosomes 1, 2, and 8 of Yugu 5, which explained 14-17% (2 environments), 9% (5 environments), and 12-20% (6 environments) of the phenotypic variations. Bulked segregant analysis (BSA) and RNA sequencing (BSR-Seq) method identified common SNPs that fell in the genomic region of QLB-czas8, providing additional evidence of localization of this QTL. Three and 19 predicted genes were annotated to be associated with disease resistance in the genomic intervals for QLB-czas2 and QLB-czas8. Due to their unique positions, these QTL appear to be new loci conferring resistance to leaf blast. The identification of these new resistance QTL will be useful in cultivar development and the study of the genetic control of blast resistance in foxtail millet.

分类号:

  • 相关文献
作者其他论文 更多>>