Integrative analysis of chloroplast DNA methylation in a marine alga-Saccharina japonica

文献类型: 外文期刊

第一作者: Teng, Linhong

作者: Teng, Linhong;Han, Wentao;Fan, Xiao;Zhang, Xiaowen;Xu, Dong;Wang, Yitao;Ye, Naihao;Teng, Linhong;Ye, Naihao;Teng, Linhong;Rahman, Sadequr;Rahman, Sadequr;Pellegrini, Matteo;Mock, Thomas

作者机构:

关键词: Saccharina japonica; Chloroplast genome; DNA methylation; Photosynthesis

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN: 0167-4412

年卷期: 2021 年 105 卷 6 期

页码:

收录情况: SCI

摘要: Key message We applied an integrative approach using multiple methods to verify cytosine methylation in the chloroplast DNA of the multicellular brown alga Saccharina japonica. Cytosine DNA methylation is a heritable process which plays important roles in regulating development throughout the life cycle of an organism. Although methylation of nuclear DNA has been studied extensively, little is known about the state and role of DNA methylation in chloroplast genomes, especially in marine algae. Here, we have applied an integrated approach encompassing whole-genome bisulfite sequencing, methylated DNA immunoprecipitation, gene co-expression networks and photophysiological analyses to provide evidence for the role of chloroplast DNA methylation in a marine alga, the multicellular brown alga Saccharina japonica. Although the overall methylation level was relatively low in the chloroplast genome of S. japonica, gametophytes exhibited higher methylation levels than sporophytes. Gene-specific bisulfite-cloning sequencing provided additional evidence for the methylation of key photosynthetic genes. Many of them were highly expressed in sporophytes whereas genes involved in transcription, translation and biosynthesis were strongly expressed in gametophytes. Nucleus-encoded photosynthesis genes were co-expressed with their chloroplast-encoded counterparts potentially contributing to the higher photosynthetic performance in sporophytes compared to gametophytes where these co-expression networks were less pronounced. A nucleus-encoded DNA methyltransferase of the DNMT2 family is assumed to be responsible for the methylation of the chloroplast genome because it is predicted to possess a plastid transit peptide.

分类号:

  • 相关文献
作者其他论文 更多>>