Exploiting Genic Male Sterility in Rice: From Molecular Dissection to Breeding Applications
文献类型: 外文期刊
第一作者: Abbas, Adil
作者: Abbas, Adil;Yu, Ping;Sun, Lianping;Chen, Daibo;Cheng, Shihua;Cao, Liyong;Abbas, Adil;Yu, Ping;Sun, Lianping;Chen, Daibo;Cheng, Shihua;Cao, Liyong;Yang, Zhengfu;Cao, Liyong
作者机构:
关键词: genic male sterility; regulatory mechanism; anther and pollen development; biotechnology based male sterility systems; hybrid breeding; rice
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.402; 五年影响因子:5.207 )
ISSN: 1664-462X
年卷期: 2021 年 12 卷
页码:
收录情况: SCI
摘要: Rice (Oryza sativa L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands. The development of the rice varieties with desired traits has become the ultimate need of the time. Genic male sterility is a predominant system that is vastly deployed and exploited for crop improvement. Hence, the identification of new genetic elements and the cognizance of the underlying regulatory networks affecting male sterility in rice are crucial to harness heterosis and ensure global food security. Over the years, a variety of genomics studies have uncovered numerous mechanisms regulating male sterility in rice, which provided a deeper and wider understanding on the complex molecular basis of anther and pollen development. The recent advances in genomics and the emergence of multiple biotechnological methods have revolutionized the field of rice breeding. In this review, we have briefly documented the recent evolution, exploration, and exploitation of genic male sterility to the improvement of rice crop production. Furthermore, this review describes future perspectives with focus on state-of-the-art developments in the engineering of male sterility to overcome issues associated with male sterility-mediated rice breeding to address the current challenges. Finally, we provide our perspectives on diversified studies regarding the identification and characterization of genic male sterility genes, the development of new biotechnology-based male sterility systems, and their integrated applications for hybrid rice breeding.
分类号:
- 相关文献
作者其他论文 更多>>
-
Gapless Genome Assembly of ZH8015 and Preliminary Multi-Omics Analysis to Investigate ZH8015's Responses Against Brown Planthopper Infestation
作者:Li, Dian;Duan, Wenjing;Liu, Qun'en;Wu, Weixun;Zhan, Xiaodeng;Sun, Lianping;Zhang, Yingxin;Cheng, Shihua
关键词:Key words: brown planthopper; gapless genome; genome assembly; multi-omics; Nilaparvata lugens; rice
-
Genome-Wide Identification and Characterization of the PPPDE Gene Family in Rice
作者:Lian, Wangmin;Zhan, Xiaodeng;Chen, Daibo;Wu, Weixun;Liu, Qunen;Zhang, Yinxing;Cheng, Shihua;Lou, Xiangyang;Cao, Liyong;Hong, Yongbo;Cao, Liyong;Hong, Yongbo
关键词:PPPDE gene family; rice; phylogenetic analysis; domestication; stress response
-
Differences in Soil Microflora between the Two Chinese Geographical Indication Products of "Tricholoma matsutake Shangri-la" and "T. matsutake Nanhua"
作者:Yao, Chunxin;Yu, Ping;Tian, Guoting;Yang, Jisheng;Liu, Jiaxun;Liang, Mingtai;Zi, Zhengquan;Li, Defen
关键词:Tricholoma matsutake; fungal community; bacterial community; function; interaction network
-
OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield
作者:Wen, Xiaoxia;Zhong, Zhengzheng;Xu, Peng;Yang, Qinqin;Liu, Ling;Wu, Zhaozhong;Wu, Yewen;Zhang, Yingxin;Liu, Qunen;Zhou, Zhengping;Peng, Zequn;Cheng, Shihua;Cao, Liyong;Zhan, Xiaodeng;Wu, Weixun;Wen, Xiaoxia;Zhong, Zhengzheng;Xu, Peng;Yang, Qinqin;Liu, Ling;Wu, Zhaozhong;Wu, Yewen;Zhang, Yingxin;Liu, Qunen;Zhou, Zhengping;Peng, Zequn;Cheng, Shihua;Cao, Liyong;Zhan, Xiaodeng;Wu, Weixun;Wen, Xiaoxia;Liu, Ling;He, Yuqing;Wang, Yinping;Wang, Yinping
关键词:
-
OsCPK12 phosphorylates OsCATA and OsCATC to regulate H2O2 homeostasis and improve oxidative stress tolerance in rice
作者:Wang, Beifang;Xue, Pao;Zhang, Yingxin;Zhan, Xiaodeng;Wu, Weixun;Yu, Ping;Chen, Daibo;Fu, Junlin;Hong, Yongbo;Shen, Xihong;Sun, Lianping;Cheng, Shihua;Liu, Qunen;Cao, Liyong;Wang, Beifang;Cao, Liyong;Wang, Beifang;Cao, Liyong
关键词:OsCPK12; OsCATs; oxidative tolerance; Oryza sativa L
-
Fine Mapping of Major qTAC8c for Tiller Angle in Oryza rufipogon
作者:Fan, Yongyi;Chen, Hongmei;Wang, Hong;Xue, Pao;Lian, Wangmin;Wu, Weixun;Liu, Qunen;Zhan, Xiaodeng;Cheng, Shihua;Cao, Liyong;Zhang, Yingxin;Fan, Yongyi;Chen, Hongmei;Wang, Hong;Xue, Pao;Lian, Wangmin;Wu, Weixun;Liu, Qunen;Zhan, Xiaodeng;Cheng, Shihua;Cao, Liyong;Zhang, Yingxin;Cao, Liyong
关键词:Oryza rufipogon; Tiller angle; 8K chip; qTAC8c; Fine mapping
-
DWARF AND LESS TILLERS ON CHROMOSOME 3 promotes tillering in rice by sustaining FLORAL ORGAN NUMBER 1 expression
作者:Fan, Yongyi;Chen, Hongmei;Wang, Beifang;Li, Dian;Zhou, Ran;Lian, Wangmin;Shao, Gaoneng;Wei, Xiangjin;Wu, Weixun;Liu, Qunen;Sun, Lianping;Zhan, Xiaodeng;Cheng, Shihua;Zhang, Yingxin;Cao, Liyong;Fan, Yongyi;Chen, Hongmei;Wang, Beifang;Li, Dian;Zhou, Ran;Lian, Wangmin;Shao, Gaoneng;Wei, Xiangjin;Wu, Weixun;Liu, Qunen;Sun, Lianping;Zhan, Xiaodeng;Cheng, Shihua;Zhang, Yingxin;Cao, Liyong;Wang, Beifang;Cao, Liyong;Cao, Liyong
关键词: