Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain

文献类型: 外文期刊

第一作者: Ju, XT

作者: Ju, XT;Kou, CL;Zhang, FS;Christie, P

作者机构:

关键词: nitrogen balance;wheat-maize rotations;greenhouse vegetables;apple orchards;groundwater nitrate contamination;North China Plain;US SAND-PLAIN;WINTER-WHEAT;FERTILIZER NITROGEN;SOIL;AGRICULTURE;MANAGEMENT;AQUIFER;CORN;EFFICIENCY;POLLUTION

期刊名称:ENVIRONMENTAL POLLUTION ( 影响因子:8.071; 五年影响因子:8.35 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems A in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha(-1) on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)A maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 19 349, 3327 and 746 kg N ha(-1), with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha(-1) in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha(-1) at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (< 15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs 14 were only about 40% of total N inputs. (c) 2005 Elsevier Ltd. All rights reserved.

分类号: X5

  • 相关文献

[1]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[2]Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Ju, X. T.,Kou, C. L.,Christie, P.,Dou, Z. X.,Zhang, F. S..

[3]Role of crop residue management in sustainable agricultural development in the North China Plain. Wu, Wenliang,Zhang, Qingzhong,Yang, Zhengli. 2008

[4]The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the Caputo derivatives. Zhang, Xiaoxian,Lv, Mouchao,Crawford, John W.,Young, Iain M..

[5]Trends in grain yields and soil organic C in a long-term fertilization experiment in the China Loess Plateau. Xu, Minggang,Fan, Tinglu,Song, Shangyou,Fan, Tinglu,Zhou, Guangye,Ding, Linping.

[6]Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Nayak, Dali,Smith, Pete,Saetnan, Eli,Newbold, Jamie,Cheng, Kun,Cheng, Yan-Fen,Zhu, Wei Yun,Pan, Genxing,Wang, Wen,Wang, Wen,Koslowski, Frank,Moran, Dominic,Wang, Jia-Kun,Liu, Jian-Xin,Yan, Xiaoyuan,Cardenas, Laura,Lui, Yuelai.

[7]Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. Marschner, P,Fu, QL,Rengel, Z.

[8]Coupled Effects of Soil Water and Nutrients on Growth and Yields of Maize Plants in a Semi-Arid Region. Sun Zhan-Xiang,Zheng Jia-Ming,Sun Wen-Tao.

[9]HEAVY METAL CONTENT IN BR CCOLI (BRASSICA OLERACEA L. VAR. ITALICA PLENCK) AND POTENTIAL HEALTH RISK IN ZHEJIANG PROVINCE, CHINA. Sun, Caixia,Zhang, Qi,Xiao, Wendan,Xu, Ping,Xiang, Shuo. 2017

[10]Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Ye, Xuezhu,Xiao, Wendan,Zhang, Yongzhi,Zhao, Shouping,Wang, Gangjun,Zhang, Qi,Wang, Qiang.

[11]Effects of integrated fertilizer application on nitrogen use efficiency of spring maize and soil nitrogen content on black soil in Harbin. Chen, Xueli,Wang, Yufeng,Zhang, Lei,Chen, Xueli,Han, Xiaozeng,Chen, Xueli,Zhang, Junzheng,Bechmann, Marianne.

[12]Determination of chlorantraniliprole residues in corn and soil by UPLC-ESI-MS/MS and its application to a pharmacokinetic study. Xu, Jun,Liu, Xingang,Li, Jing,Li, Yuanbo,Kong, Zhiqiang,Zheng, Yongquan,Shan, Weili,Zheng, Zuntao.

[13]Soil organic sulfur mineralization in the presence of growing plants under aerobic or waterlogged conditions. Li, ST,Lin, B,Zhou, W. 2001

[14]A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Guo, Xiu-ming,Guo, Xiu-ming,Yang, Xin-ting,Chen, Mei-xiang,Li, Ming,Wang, Yan-an.

[15]Cloud-Based Video Monitoring System Applied in Control of Diseases and Pests in Orchards. Xia, Xue,Qiu, Yun,Hu, Lin,Fan, Jingchao,Guo, Xiuming,Zhou, Guomin. 2016

[16]Investigation of karst hydrological processes by using grey auto-incidence analysis. Hao, Yonghong,Chen, Xiang,Wang, Xuemeng.

[17]Adaptation of agriculture to warming in Northeast China. Yang, Xiu,Lin, Erda,Ma, Shiming,Ju, Hui,Guo, Liping,Xiong, Wei,Li, Yue,Xu, Yinlong.

[18]Resistance to soil-borne diseases of wheat: Contributions from the wheatgrasses Thinopyrum intermedium and Th ponticum. Li, Hongjie,Conner, R. L.,Murray, T. D..

[19]The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Lillemo, M.,Asalf, B.,Bjornstad, A.,Singh, R. P.,Huerta-Espino, J.,Chen, X. M.,He, Z. H..

[20]Effect of individual Sumai 3 chromosomes on resistance to scab spread within spikes and deoxynivalenol accumulation within kernels in wheat. Zhou, WC,Kolb, FL,Bai, GH,Domier, LL,Yao, JB.

作者其他论文 更多>>