A novel approach based on a modified mask R-CNN for the weight prediction of live pigs
文献类型: 外文期刊
第一作者: Xie, Chuanqi
作者: Xie, Chuanqi;Xu, Xing;Zhou, Weidong;Cang, Yuji;Lou, Xizhong;Li, Xiangjun;Xiao, Hua
作者机构:
关键词: Deep learning; Modified mask R-CNN; Image processing; Pig weight; Prediction
期刊名称:ARTIFICIAL INTELLIGENCE IN AGRICULTURE ( 影响因子:12.4; 五年影响因子:12.7 )
ISSN:
年卷期: 2024 年 12 卷
页码:
收录情况: SCI
摘要: Since determining the weight of pigs during large-scale breeding and production is challenging, using noncontact estimation methods is vital. This study proposed a novel pig weight prediction method based on a modified mask region-convolutional neural network (mask R-CNN). The modified approach used ResNeSt as the backbone feature extraction network to enhance the image feature extraction ability. The feature pyramid network (FPN) was added to the backbone feature extraction network for multi-scale feature fusion. The channel attention mechanism (CAM) and spatial attention mechanism (SAM) were introduced in the region proposal network (RPN) for the adaptive integration of local features and their global dependencies to capture global information, ultimately improving image segmentation accuracy. The modified network obtained a precision rate (P), recall rate (R), and mean average precision (MAP) of 90.33%, 89.85%, and 95.21%, respectively, effectively segmenting the pig regions in the images. Five image features, namely the back area, body length, body width, average depth, and eccentricity, were investigated. The pig depth images were used to build five regression algorithms (ordinary least squares (OLS), AdaBoost, CatBoost, XGBoost, and random forest (RF)) for weight value prediction. AdaBoost achieved the best prediction result with a coefficient of determination (R 2 ) of 0.987, a mean absolute error (MAE) of 2.96 kg, a mean square error (MSE) of 12.87 kg 2 , and a mean absolute percentage error (MAPE) of 8.45%. The results demonstrated that the machine learning models effectively predicted the weight values of the pigs, providing technical support for intelligent pig farm management. (c) 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
分类号:
- 相关文献
作者其他论文 更多>>
-
The genomic and epigenomic landscapes of hemizygous genes across crops with contrasting reproductive systems
作者:Peng, Yanling;Wang, Yiwen;Liu, Yuting;Fang, Xinyue;Cheng, Lin;Long, Qiming;Su, Dalu;Zhang, Tianhao;Shi, Xiaoya;Xu, Xiaodong;Xu, Qi;Wang, Nan;Zhang, Fan;Liu, Zhongjie;Xiao, Hua;Huang, Sanwen;Zhou, Yongfeng;Yao, Jin;Tian, Ling;Hu, Wei;Chen, Songbi;Huang, Sanwen;Zhou, Yongfeng;Wang, Haibo;Gaut, Brandon S.
关键词:grapevine; clonal propagation; structural variation; integrative genomics; heterozygosity
-
Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors
作者:Wu, Yue;Xu, Xing;Zhu, Yinchu;Wang, Xingbo;Zhou, Xin;Zhou, Weidong;Wan, Jiaxin;Li, Xiangjun
关键词:multiple pathogens; optical biosensors; microfluidic devices; nucleic acid amplification; nanomaterials
-
The cytonuclear interactions during grapevine domestication
作者:Hou, Ting;Liu, Yuting;Yan, Sheng;Yang, Sifan;Leng, Xiangpeng;Hou, Ting;Xu, Yanshuai;Dong, Yang;Zhang, Tianhao;Zhou, Lianzhu;Su, Xiangnian;Zhang, Yi;Zhang, Yingchun;Chen, Cheng;Shi, Xiaoya;Liu, Yuting;Li, Jiacui;Du, Mengrui;Fang, Xinyue;Yan, Sheng;Yang, Sifan;Wang, Wenrui;Chen, Zhuyifu;Qiao, Siqi;Ahmad, Bilal;Xu, Xiaodong;Peng, Yanling;Xiao, Hua;Jin, Zhongxin;Li, Chaochao;Zhou, Yongfeng;Xu, Yanshuai;Yao, Jin;Tian, Ling;Jin, Zhongxin;Li, Chaochao;Zhou, Yongfeng;Jin, Zhongxin;Li, Chaochao;Tan, Cong
关键词:grapevine; mitochondrial structural variation; NUMTs; NUPTs; viticulture
-
Impacts of reproductive systems on grapevine genome and breeding
作者:Xiao, Hua;Wang, Yue;Liu, Wenwen;Shi, Xiaoya;Huang, Siyang;Cao, Shuo;Long, Qiming;Wang, Xu;Liu, Zhongjie;Xu, Xiaodong;Peng, Yanling;Huang, Sanwen;Zhou, Yongfeng;Shi, Xiaoya;Liu, Zhongjie;Wang, Pengfei;Jiang, Zhonghao;Riaz, Summaira;Walker, Andrew M.;Gaut, Brandon S.;Huang, Sanwen;Zhou, Yongfeng
关键词:
-
Mango pangenome reveals dramatic impacts of reference bias on population genomic analyses
作者:Ahmad, Bilal;Su, Ying;Hao, Yani;Razzaq, Tayyaba;Arshad, Rida;Zhang, Yi;Zhang, Yingchun;Wang, Xingyi;Huang, Guizhou;Su, Xiangnian;Hou, Ting;Yang, Xuanwen;Xu, Qi;Xu, Xiaodong;Peng, Yanling;Xiao, Hua;Zhou, Yongfeng;Su, Ying;Chu, Zhenzhou;Tian, Xinmin;Hao, Yani;Wang, Xingyi;Li, Chaochao;Jin, Zhongxin;Xu, Xiaodong;Bi, Guiqi;Chen, Chengjie;Huang, Jianfeng;Zhou, Yongfeng;Li, Chuanning;Chu, Zhenzhou;Wang, Qiuyan;Tian, Xinmin;Li, Chuanning;Chu, Zhenzhou;Wang, Qiuyan;Tian, Xinmin;Zhang, Yu;Chen, Yeyuan
关键词:
-
Coupling urchin-like TiO2 nanospheres with nitrogen and sulfur co-doped graphene quantum dots for visible-light-induced degradation of toluene
作者:Tang, Juntao;Zhu, Jiaxin;Liu, Luzhen;He, Zhiqiao;Wang, Da;Song, Shuang;Xia, Lin;Xu, Xing
关键词:Photocatalysis; Urchin-likeTiO2 nanospheres; N and S co-doped graphene quantum dots; S-scheme heterojunction; Toluene degradation
-
Integrated Metabolomics and Transcriptomics Analyses Highlight the Flavonoid Compounds Response to Alkaline Salt Stress in Glycyrrhiza uralensis Leaves
作者:Lv, Xuelian;Xu, Xing;Lv, Xuelian;Bai, Haibo;Hui, Jian;Li, Shuhua;Zhu, Lin;Ma, Dongmei;Zhang, Fengju;Cai, Zhengyun;Li, Ming
关键词:Glycyrrhiza uralensis; metabolomics; transcriptomics; alkaline salt stress; flavonoidbiosynthesis