The occurrence of wheat crown rot correlates with the microbial community and function in rhizosphere soil

文献类型: 外文期刊

第一作者: Wang, Yajiao

作者: Wang, Yajiao;Han, Sen;Li, Qiusheng;Kong, Lingxiao;Wu, Yuxing;Feng, Jian;Gao, Jianhai

作者机构:

关键词: wheat crown rot; soil chemical properties; rhizosphere microbial community; Bacillus velezensis; biological control

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:4.5; 五年影响因子:5.2 )

ISSN:

年卷期: 2025 年 16 卷

页码:

收录情况: SCI

摘要: Wheat crown rot (WCR) is a significant soil-borne disease affecting wheat production worldwide. Understanding the impact of wheat crown rot on the structure and function of microbial communities in the wheat rhizosphere soil can provide a theoretical basis for the mining biological control resources against WCR. In this study, rhizosphere soils with varying WCR severities (light, moderate, severe) were analyzed for chemical properties, microbial community composition and functions using high-throughput sequencing. The results revealed that WCR decreased rhizosphere soil pH, the content of available nitrogen and phosphorus, and the abundance of beneficial taxa such as Bacillus and Streptomyces. Additionally, functional predictions showed that microbial communities adapted to WCR by enhancing signaling pathways and reducing their anabolic activity. From soil with light WCR occurrence, we isolated Bacillus velezensis BF-237, whose abundance was reduced by WCR. Greenhouse experiments demonstrated that BF-237 achieved a control efficiency of 56.61% against WCR in artificially inoculated sterilized soil and 53.32% in natural soil. This study clarifies the impact of wheat crown rot on the community structure, and function of rhizosphere soil microorganisms, alongside identifying a promising biocontrol agent. These findings contribute to understanding WCR pathogenesis and offer practical resources for its management.

分类号:

  • 相关文献
作者其他论文 更多>>