Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean

文献类型: 外文期刊

第一作者: Di, Yi-Huan

作者: Di, Yi-Huan;Zhao, Shan-Shan;Di, Yi-Huan;Sun, Xian-Jun;Hu, Zheng;Jiang, Qi-Yan;Song, Guo-Hua;Zhang, Hui;Zhang, Bo

作者机构:

关键词: Soybean; U6 promoter; Transcriptional activity; Gene editing

期刊名称:BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS ( 影响因子:3.575; 五年影响因子:3.381 )

ISSN: 0006-291X

年卷期: 2019 年 519 卷 4 期

页码:

收录情况: SCI

摘要: Small guide RNA (sgRNA) is an important component of the CRISPR/Cas9 system. The gene editing efficiency of the CRISPR/Cas9 system could be enhanced by using highly active U6 promoters to drive the expression of sgRNA. Therefore, we constructed various expression vectors based on the 11 GmU6 promoters predicted and cloned in the whole soybean genome. The expression of truncated GUS driven by 11 GmU6 promoters was tested in hairy roots and by Arabidopsis thaliana transformation. The results indicated that higher transcriptional levels were driven by 5 GmU6 promoters (GmU6-4, GmU6-7, GmU6-8, GmU6-10 and GmU6-11) in both soybean hairy roots and Arabidopsis thaliana. In addition, three genes, Glyma03g36470, Glyma14g04180 and Glyma06g136900, were selected as targets to detect the transcriptional levels of multiple GmU6 promoters. Mutations in these three genes were detected in soybean hairy roots after Agrobacterium rhizogenes infection, indicating efficient target gene editing, including nucleotide insertion, deletion, and substitution. Mutation efficiencies differed among the 11 GmU6 promoters, ranging from 2.8% to 20.6%, and markedly higher efficiencies were obtained with all three genes using the GmU6-8 (20.3%) and GmU6-10 (20.6%) promoters. These two GmU6 promoters also showed higher ability to drive truncated GUS transcription in both soybean hairy roots and transformed Arabidopsis thaliana. These results will help to construct an efficient CRISPR-Cas9 gene editing system and promote the application of the CRISPR-Cas9 genome editing system in soybean molecular breeding. Published by Elsevier Inc.

分类号:

  • 相关文献
作者其他论文 更多>>