Immunocompetence of Gynaikothrips uzeli (Thysanoptera: Phlaeothripidae) populations from different latitudes against Beauveria bassiana (Hypocreales: Cordycipitaceae)

文献类型: 外文期刊

第一作者: Yu, Deyi

作者: Yu, Deyi;Huang, Peng;Lin, Yongwen;Yao, Jinai;Hou, Xiangyu;Lin, Yongwen;Lan, Yanyang;Akutse, Komivi Senyo

作者机构:

关键词: Gall thrips; Latitudes; Degree day; Entomopathogenic fungi; Immunocompetence; Toll pathway

期刊名称:JOURNAL OF INVERTEBRATE PATHOLOGY ( 影响因子:2.841; 五年影响因子:3.368 )

ISSN: 0022-2011

年卷期: 2020 年 171 卷

页码:

收录情况: SCI

摘要: Gynaikothrips uzeli gall thrips are protected from insecticide exposure by their leaf gall habitat. A biocontrol strategy based on entomopathogenic fungi is an alternative approach for the control of G. uzeli. Higher temperatures can promote the reproduction and spread of pests; however, the impact of higher temperatures on biological control is unclear. We studied the immunocompetence of thrips from different latitudes and determined the effect of degree days on thrips immunity. We examined the potential impact of temperature on the biocontrol provided by entomopathogenic fungi. Beauveria bassiana pathogenicity against thrips increased with decreasing latitude, suggesting that immunity of thrips increased as latitude increased. The phenoloxidase activity of G. uzeli increased with increasing latitude but there was no significant change in hemocyte concentration. This indicated that the humoral immunity of thrips was significantly associated with degree days, and this was confirmed by transcriptome data. Transcriptome and RT-PCR results showed that the expression of key genes in eight toll pathways increased with increasing latitude. The relative expression of key genes in the Toll pathway of thrips and the activity of phenoloxidase decreased with increasing degree days that are characteristic of lower latitudes. These changes led to a decrease in humoral immunity. The immunity of G. uzeli against entomopathogenic fungi increased as degree days characteristic of lower latitudes decreased. Increased temperatures associated with lower latitude may therefore increase biocontrol efficacy. This study clarified immune level changes and molecular mechanisms of thrips under different degree days.

分类号:

  • 相关文献
作者其他论文 更多>>