Constitutive expression of AtSINA2 from Arabidopsis improves grain yield, seed oil and drought tolerance in transgenic soybean

文献类型: 外文期刊

第一作者: Yang, Jin

作者: Yang, Jin;Mao, Tingting;Geng, Zigui;Xue, Wenwen;Wang, Limin;Yu, Chunyan;Sheng, Yuting;Zhang, Juan;Zhang, Hongxia;Yang, Jin;Geng, Zigui;Jin, Yu;Guo, Pan;Qiu, Zitong;Zhang, Juan;Ma, Lan;Zhang, Hongxia;Mao, Tingting;Wang, Limin;Yu, Chunyan;Sheng, Yuting;Zhang, Hongxia;Zhang, Juan;Zhang, Hongxia

作者机构:

关键词: AtSINA2; Drought; Grain yield; Seed oil; Soybean

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:6.5; 五年影响因子:6.4 )

ISSN: 0981-9428

年卷期: 2023 年 196 卷

页码:

收录情况: SCI

摘要: The SEVEN IN Absentia (SINA), a typical member of the RING E3 ligase family, plays a crucial role in plant growth, development and response to abiotic stress. However, its biological functions in oil crops are still un-known. Previously, we reported that overexpression of AtSINA2 in Arabidopsis positively regulated the drought tolerance of transgenic plants. In this work, we demonstrate that ectopic expression of AtSINA2 in soybean improved the shoot growth, grain yield, drought tolerance and seed oil content in transgenic plants. Compared to wild type, transgenic soybean produced greater shoot biomass and grain yield, and showed improved seed oil and drought tolerance. Physiological analyses exhibited that the increased drought tolerance of transgenic plants was accompanied with a higher chlorophyll content, and a lower malondialdehyde accumulation and water loss during drought stress. Further transcriptomic analyses revealed that the expressions of genes related to plant growth, flowering and stress response were up-or down-regulated in transgenic soybean under both normal and drought stress conditions. Our findings imply that AtSINA2 improved both agricultural production and drought tolerance, and it can be used as a candidate gene for the genetic engineering of new soybean cultivars with improved grain yield and drought resistance.

分类号:

  • 相关文献
作者其他论文 更多>>