Characterization of CIMMYT bread wheats for high- and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers

文献类型: 外文期刊

第一作者: Liang, Dan

作者: Liang, Dan;Tang, Jianwei;He, Xinyao;Shen, Xiaoyong;Xia, Xianchun;Javier Pena, Roberto;Singh, Ravi;He, Zhonghu;Liang, Dan;Yao, Danian

作者机构:

关键词: ALLELES;GENOTYPE;QUALITY;GENETICS;GLUTENIN;WHEAT

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Two hundred and seventy-three CIMMYT bread wheat cultivars and advanced lines grown under irrigated conditions in Mexico during the 2005-06 Yaqui crop cycle were characterized for quality-related genetic traits using gene-specific markers for some high- and low-molecular-weight glutenin subunit (HMW-GS and LMW-GS) genes, polyphenol oxidase (PPO), phytoene synthase (PSY), and waxy genes. Of them, 142 were analyzed for quality parameters including SDS sedimentation volume (SDS-SV), dough mixing time, and Alveograph parameters, and for HMW-GS and LMW-GS compositions using sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and reversed-phase high-performance liquid chromatography (RP-HPLC). For the Ppo-A1 locus tested with the marker PPO18, the frequencies of alleles Ppo-A1a and Ppo-A1b were 79.1 and 20.2%, respectively, and no PCR fragment was amplified in 2 lines (0.73%), whereas 227 lines (83.2%) contained the allele Ppo-D1a and 46 lines (16.8%) had Ppo-D1b detected by markers PPO16 and PPO29. For the marker YP7A, 142 lines (52.0%) were assumed to have the allele Psy-A1a and 131 lines (48.0%) contained the allele Psy-A1b. In the case of the marker YP7B for the gene Psy-B1, the alleles Psy-B1a and Psy-B1b were detected in 155 (56.8%) and 43 (15.8%) lines, respectively, and 75 (27.4%) lines possessed the allele Psy-B1d detected by the marker YP7B-3. All 273 lines contained the alleles Wx-A1a and Wx-D1a as determined by markers MAG264 and MAG269, respectively. Using the marker Wx-B1, 204 lines (74.7%) were presumed to have the Wx-B1a allele and 69 (25.3%) possessed Wx-B1b. The over-expressing allele of Bx7 OE and subunit By8*, not clearly seen with SDS-PAGE, were detected by RP-HPLC. The numbers of lines with subunits Ax2*, By8, By9, Bx17, Bx20, Dx5, and Glu-B3j were 90, 16, 57, 5, 46, 118, and 33, respectively, in the 142 lines analyzed with molecular markers, and were consistent with the results obtained by SDS-PAGE, except for one line with the 1A.1R translocation. Subunits Ax1 and Ax2* at the Glu-A1 locus showed significantly better effects on all quality parameters than subunit Null. Subunits 5 + 10 gave significantly better effects for all parameters. Subunit Glu-A3b showed more positive effects than its alternative alleles on SDS-SV and SDS-sedimentation volume/protein content index (SPI). The allele Glu-B3g showed the best effect on SDS-SV and Alveograph W, whereas Glu-B3j, associated with the 1B.1R translocation, exhibited a strongly negative effect on all quality parameters.

分类号: S3

  • 相关文献

[1]Genetic variation of wheat glutenin subunits between landraces and varieties and their contributions to wheat quality improvement in China. Li, Yulian,Huang, Chengyan,Sui, Xinxia,Fan, Qingqi,Li, Genying,Chu, Xiusheng.

[2]Functional markers in wheat: current status and future prospects. Liu, Yanan,He, Zhonghu,Xia, Xianchun,He, Zhonghu,Appels, Rudi.

[3]Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Kong, XY,Gu, YQ,You, FM,Dubcovsky, J,Anderson, OD.

[4]Prolactin receptor as a candidate gene for prolificacy of small tail han sheep. Chu, M. X.,Mu, Y. L.,Fang, L.,Ye, S. C.,Sun, S. H..

[5]Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles. He, Zhonghu,Ma, Dongyun,Morris, Craig F..

[6]Characterisation of high- and low-molecular-weight glutenin subunit genes in Chinese winter wheat cultivars and advanced lines using allele-specific markers and SDS-PAGE. Yang, F. P.,Wang, L. H.,Wang, J. W.,He, X. Y.,Xia, X. C.,He, Z. H.,Yang, F. P.,Yang, W. X.,Wang, J. W.,Zhang, X. K.,Shang, X. W.,He, Z. H..

[7]Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers. Li, X. J.,Xu, X.,Yang, X. M.,Li, X. Q.,Liu, W. H.,Gao, A. N.,Li, L. H.,Li, X. J.,Xu, X..

[8]Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). Wang, Linhai,Xia, Xianchun,He, Zhonghu,Li, Genying,Pena, Roberto J.,He, Zhonghu.

[9]Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. Guo, Zhiai,Song, Yanxia,Zhou, Ronghua,Jia, Jizeng,Guo, Zhiai,Ren, Zhenglong.

[10]Quality differences between NILs of wheat variety Long 97-586 possessing HMW-GS 7+8 and 7. Zhang LiLi,Zhang YanBin,Li JiLin,Zhang LiLi,Zhang YanBin,Zhao HaiBin,Song QingJie,Yu HaiYang,Zhang ChunLi,Xin WenLi,Xiao ZhiMin. 2010

[11]Analysis on Quality Characters Diversity of Wheat Landraces from Yangtze River Valley. Zheng, Wei,Sun, Dongfa,Zheng, Wei,Pan, Feng. 2012

[12]Development and identification of wheat-barley 2H chromosome translocation lines carrying the Isa gene. Zou, Hongda,Wu, Ying,Liu, Hongkui,Yuan, Yaping,Lin, Zhishan,Ye, Xingguo,Chen, Xiao. 2012

[13]Homoeologous cloning of omega-secalin gene family in a wheat 1BL/1RS translocation. Chai, JF,Liu, X,Jia, JZ. 2005

[14]Comparison of Rhizosphere Impacts of Wheat (Triticum aestivum L.) Genotypes Differing in Phosphorus Efficiency on Acidic and Alkaline Soils. Liu, Wenke,Hou, Yanyan,Zhan, Xiaoying,Li, Guihua,Zhang, Shuxiang,Liu, Wenke. 2012

[15]The effectiveness of multi-element fingerprints for identifying the geographical origin of wheat. Liu, Hongyan,Wei, Yimin,Zhang, Yingquan,Wei, Shuai,Zhang, Senshen,Guo, Boli.

[16]Genotypic Variation in Wheat Flour Lysophospholipids. Liu, Lei,Guo, Qi,Waters, Daniel L. E.,Raymond, Carolyn A.,King, Graham J.,Guo, Qi,He, Zhonghu,Xia, Xianchun,He, Zhonghu.

[17]The Influence of Phosphorus Sources on the Growth and Rhizosphere Soil Characteristics of Two Genotypes of Wheat (Triticum aestivum L.). Zhan, Xiaoying,Hou, Yanyan,Zhang, Shuxiang,Liu, Wenke.

[18]Effects of glutenin in wheat gluten on retrogradation of wheat starch. Lian, Xijun,Kang, Haiqi,Gao, Kai,Li, Lin,Li, Lin.

[19]Resistance of Tangmai 4 wheat to powdery mildew, stem rust, leaf rust, and stripe rust and its chromosome composition. Li, HJ,Conner, RL,McCallum, BD,Chen, XM,Su, H,Wen, ZY,Chen, Q,Jia, X. 2004

[20]Genetic diversification of the Chinese wheat landrace Mazhamai as revealed by seed storage proteins, morphological characteristics, and microsatellite markers. Zhang, Lingli,Li, Hongjie,Li, Lihui,Zhang, Lingli,Wang, Hui. 2007

作者其他论文 更多>>