BmADARa cooperatively inhibits BmNPV proliferation through the interaction of its dsRBD2 with BmDcr-2-DEXHc in silkworm, Bombyx mori

文献类型: 外文期刊

第一作者: Jiang, Song

作者: Jiang, Song;Wu, Yu-Chen;Shi, Ruo-Yun;Yu, Yu-Long;Saneela, Syeda;Huang, Yan-Jiao;Shi, Xia-Ming;Meng, Yan;Ye, Chong-Jun;Liang, Dan;Huang, Yan-Jiao;Shi, Xia-Ming;Meng, Yan;Huang, Yan-Jiao;Shi, Xia-Ming;Meng, Yan;Wu, Yu-Chen;Meng, Yan

作者机构:

关键词: BmADARa; BmDcr-2; BmNPV proliferation; RNAi pathway; silkworm

期刊名称:INSECT SCIENCE ( 影响因子:3.0; 五年影响因子:3.5 )

ISSN: 1672-9609

年卷期: 2025 年

页码:

收录情况: SCI

摘要: Adenosine deaminases that act on RNA (ADARs) are RNA editing enzymes capable of converting adenosine into inosine at specific sites within double-stranded RNA (dsRNA), widely distributed across various animal species. Dicer (Dcr), a member of the RNase III family and a crucial component of the RNA-induced silencing complex (RISC), allows ADAR to participate in innate immunity through Dcr-2 in Drosophila. Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the viruses that can cause substantial economic losses to the sericulture industry upon infecting silkworm. Knocking down the expression of BmDcr-2 in silkworm enhances the proliferation of BmNPV. Our previous research revealed the existence of a predominantly expressed subtype, ADARa, in silkworm (BmADARa), which shares homology with Drosophila ADAR. It remains unclear whether BmADARa can also participate in innate immunity through BmDcr-2. Initially, through bacterial challenge experiments, we found that BmADARa exhibited the highest responsiveness to BmNPV stimulation. Further studies demonstrated that BmADARa, in conjunction with BmDcr-2-DEXHc (DEAD-box helicase domain), collectively inhibits the proliferation of BmNPV. BmADARa interacts with the DEXHc domain of BmDcr-2 through its dsRNA binding domain 2 (dsRBD2), thereby enhancing its ability to inhibit BmNPV proliferation. These results lay a foundation for the study of the function and molecular mechanism of BmADARa in innate immunity, and provide a new experimental ideas for antiviral research in B. mori.

分类号:

  • 相关文献
作者其他论文 更多>>