Genome-wide identification of Glutathione peroxidase (GPX) family genes and silencing TaGPX3.2A reduced disease resistance in wheat
文献类型: 外文期刊
第一作者: Jiang, Baihui
作者: Jiang, Baihui;Su, Chang;Xu, Xiao;Li, Yan;Ma, Dongfang;Wang, Youning;Ma, Dongfang
作者机构:
关键词: Wheat(Triticum aestivum L.); Glutathione peroxidase; Abiotic/Biotic stresses; Functional characterization; Oxidative stress
期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:6.5; 五年影响因子:6.4 )
ISSN: 0981-9428
年卷期: 2023 年 204 卷
页码:
收录情况: SCI
摘要: Glutathione peroxidase (GPX) is a crucial enzyme that scavenges reactive oxygen species in plants, playing a vital role in enhancing plant stress resistance. In this study, we identified 14 glutathione peroxidase genes (TaGPXs) from common hexaploid wheat (Triticum aestivum L.). These genes were subsequently categorized into three distinct groups based on their phylogenetic relationships. Simultaneously, a preliminarily analysis was conducted on the protein characteristics, chromosome localization, gene structure, cisregulatory elements and transcriptome. Using reverse transcription quantitative PCR to analyze the expression patterns of five GPX genes that were investigated under various exogenous hormone treatments. According to the qRT-PCR analysis, it indicated that TaGPX genes have the distinct expression patterns. The enzyme activities in transiently overexpressed Nicotiana benthamiana (TaGPX3.2A and TaGPX3.4A) leaves were measured under salt and drought stresses, showed that peroxidase (POD) exhibited higher enzyme activity under stresses. Silencing TaGPX3.2A by virus-induced gene silencing (VIGS) led to reduced resistance of wheat to Fusarium graminearum, indicating that TaGPX3.2A plays a crucial role in enhancing wheat resistance against F. graminearum. This research provides a foundational basis for further investigations on the functional characterization of TaGPXs family members. And in the future it is provides valuable resources for genetic improvement of wheat resistance.
分类号:
- 相关文献
作者其他论文 更多>>
-
Integration of transcriptome, histopathology, and physiological indicators reveals regulatory mechanisms of largemouth bass ( Micropterus salmoides) in response to carbonate alkalinity stress
作者:Hua, Jixiang;Xi, Bingwen;Qiang, Jun;Hua, Jixiang;Tao, Yifan;Lu, Siqi;Li, Yan;Dong, Yalun;Jiang, Bingjie;Xi, Bingwen;Qiang, Jun
关键词:Micropterus salmoides; Carbonate alkalinity stress; Tissue damage; Serum biological chemistry; RNA-seq
-
Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton
作者:Zeng, Qing;Wang, Junjuan;Wang, Shuai;Lu, Xuke;Li, Yan;Ye, Wuwei;Yin, Zujun;Peng, Fanjia;Bakhsh, Allah;Qaraevna, Bobokhonova Zebinisso;Ye, Wuwei;Yin, Zujun
关键词:
-
Effect of combined nitrogen and phosphorus fertilization on summer maize yield and soil fertility in coastal saline-alkali land
作者:Ma, Changjian;Wang, Yue;Liu, Lining;Wang, Xuejun;Sun, Zeqiang;Li, Yan;Ma, Changjian;Wang, Yue;Wu, Wenbiao;Hou, Peng;Li, Bowen;Yuan, Huabin
关键词:Grain yield; Biomass yield; Fertilizer physiological efficiency; Coastal saline-alkali land
-
Comparative genomic analysis reveals the difference of NLR immune receptors between anthracnose-resistant and susceptible sorghum cultivars
作者:Zhang, Ji-Wei;Li, Jin-Yang;Yu, Zhi-Fan;Chang, Xin-Ya;Han, Jun-Ru;Xia, Jing-Yang;Kami, Yam Bahadur;Wang, He;Li, Yan;Wang, Wen-Ming;Sun, Yuan-Tao;Ni, Xian-Lin;Li, Ling;Wang, Song-Tao
关键词:Sorghum; Anthracnose; NLR receptor; Colletotrichum sublineola; Genetic variation; Differential gene expression
-
The role of the nitrate transporter NRT1.1 in plant iron homeostasis and toxicity on ammonium
作者:Li, Guangjie;Zhang, Lin;Wang, Yanqin;Li, Yan;Wang, Zhaoyue;Shi, Weiming;Kronzucker, Herbert J.;Kronzucker, Herbert J.;Chen, Gui
关键词:Ammonium toxicity; Iron; Nitrate; NRT1.1; Root growth
-
Context-dependent response of crop pests to landscape composition
作者:Yang, Long;Pan, Yunfei;Wyckhuys, Kris A. G.;Li, Minlong;Wang, Kaitao;Liu, Bing;Liu, Yangtian;Jia, Shuangshuang;Li, Qian;Li, Yan;Lu, Yanhui;Wyckhuys, Kris A. G.;Desneux, Nicolas
关键词:Agroecology; context dependency; ecological based pest management; ecological intensification; host quality
-
TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis
作者:Dong, Feiyan;Liu, Yide;Zhang, Huadong;Li, Yaqian;Chen, Sheng;Wang, Shuailei;Zhu, Zhanwang;Liu, Yike;Song, Jinghan;Li, Yan
关键词:Wheat;
TaSnRK3.23B ; Ectopic expression; Drought stress; CBL proteins