Long-term rice-eel co-culture system effectively alleviated the accumulation of antibiotic resistance genes in soil

文献类型: 外文期刊

第一作者: Zhou, Wenzong

作者: Zhou, Wenzong;Lv, Weiwei;Yuan, Quan;Zhang, Yuning;Yang, Hang;Huang, Weiwei;Lv, Weiguang;Zhao, Qingqing

作者机构:

关键词: Antibiotic resistance genes (ARGs); Rice-eel co-culture; Virulence factor genes (VFGs); Mobile genetic elements (MGEs); Bacterial community

期刊名称:JOURNAL OF ENVIRONMENTAL MANAGEMENT ( 影响因子:8.4; 五年影响因子:8.6 )

ISSN: 0301-4797

年卷期: 2025 年 380 卷

页码:

收录情况: SCI

摘要: Alleviating the accumulation of antibiotic resistance genes (ARGs) in farmlands is crucial for restricting the transfer of ARGs to crops and controlling the soil-borne microbiological health risk. Rice and eel co-culture (REC) systems have recently been used as an emerging integrated farming model that can stabilize grain yields and improve fertilizer availability. However, the influence of long-term REC system concerning the aggregation and health risk of ARGs in rice fields is still unclear. Here, we deciphered firstly the profile, potential of pathogenicity and mobility, and bacterial hosts for soil ARGs in the long-term REC system compared to the mono-rice (MR) culture system by collecting soil samples from 12 rice fields in Shanghai. The long-term REC system alleviated the accumulation of ARGs in soil, which is manifested in the abundance decrease of total ARGs and 11 ARG types (e.g., multidrug and aminoglycoside). The frequency of ARGs co-occurring with VFGs and MGEs was lower in the long-term REC system than in the MR system, indicating the lower pathogenicity and mobility potential for ARGs. The soil microbial community was identified to primarily drive the ARG discrepancy between the longterm REC and MR systems. In comparison with the MR system, long-term REC weakened the competitive advantage of ARG bacterial hosts, which might contribute to the decreased prevalence of antibiotic resistance. Overall, these findings uncovered the important role of long-term REC system in alleviating the accumulation of soil ARGs, providing theoretical support for antibiotic resistance risk control and sustainable agricultural strategic management.

分类号:

  • 相关文献
作者其他论文 更多>>