Genome-wide identification of MAXs genes for strigolactones synthesis/signaling in solanaceous plants and analysis of their potential functions in tobacco

文献类型: 外文期刊

第一作者: Wang, Lixianqiu

作者: Wang, Lixianqiu;Li, Bingjie;Dai, Changbo;Ding, Anming;Wang, Weifeng;Shi, Haoqi;Cui, Mengmeng;Sun, Yuhe;Lv, Jing;Wang, Lixianqiu;Li, Bingjie;Shi, Haoqi

作者机构:

关键词: Strigolactone biosynthesis; Strigolactone signal transduction; Cis-elements; MAXs gene family; Shoot development; Abiotic stress

期刊名称:PEERJ ( 影响因子:2.7; 五年影响因子:3.1 )

ISSN: 2167-8359

年卷期: 2023 年 11 卷

页码:

收录情况: SCI

摘要: The more axillary growth (MAX) gene family is a group of key genes involved in the synthesis and signal transduction of strigolactones (SLs) in plants. Although MAX genes play vital roles in plant growth and development, characterization of the MAX gene family has been limited in solanaceous crops, especially in tobacco. In this study, 74 members of the MAX family were identified in representative Solanaceae crops and classified into four groups. The physicochemical properties, gene structure, conserved protein structural domains, cis-acting elements, and expression patterns could be clearly distinguished between the biosynthetic and signal transduction subfamilies; furthermore, MAX genes in tobacco were found to be actively involved in the regulation of meristem development by responding to hormones. MAX genes involved in SL biosynthesis were more responsive to abiotic stresses than genes involved in SL signaling. Tobacco MAX genes may play an active role in stress resistance. The results of this study provide a basis for future in-depth analysis of the molecular mechanisms of MAX genes in tobacco meristem development and stress resistance.

分类号:

  • 相关文献
作者其他论文 更多>>