Effect of Wide Variation of the Waxy Gene on Starch Properties in Hull-less Barley from Qinghai-Tibet Plateau in China

文献类型: 外文期刊

第一作者: Li, Qiao

作者: Li, Qiao;Pan, Zhifen;Deng, Guangbing;Long, Hai;Deng, Xiaoqing;Liang, JunJun;Yu, Maoqun;Li, Qiao;Deng, Xiaoqing;Liang, JunJun;Li, Zhongyi;Tang, Yawei;Zeng, Xingquan;Tashi, Nyima

作者机构:

关键词: Waxy; GBSS I; hull-less barley; amylose; starch properties; Qinghai-Tibet plateau

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.895; 五年影响因子:6.048 )

ISSN: 0021-8561

年卷期: 2014 年 62 卷 47 期

页码:

收录情况: SCI

摘要: Granule-bound starch synthase I (GBSS I) plays an important role in the synthesis of amylose and in the determination of starch properties in barley grains. Genomic DNAs for the Waxy gene encoding GBSS I protein were sequenced from 34 barley accessions or lines from Qinghai-Tibet plateau in China, to identify Waxy gene nucleotide variations and study the roles of polymorphic sites of the Waxy gene on expression levels of Waxy transcripts and GBSS I proteins and on resulting starch properties. A total of 116 DNA polymorphic sites were identified within the barley Waxy gene, which divided the studied accessions into 11 haplotypes. Among 33 nucleotide polymorphic sites in coding regions, 5 SNPs in three exons were found to play different roles on the expression level of the Waxy transcript and the GBSS I protein and on the amylose content and starch properties. One SNP G(3935)-to-T substitution in the 10th exon in the accession Z999 (HP II-2) caused a high expression level of the Waxy transcript and the GBSS I protein and the amylose free phenotype. The other SNP alteration was a C2453-to-T in the fifth exon in the accession Z1191 (HP I-5), which drastically reduced the expression level of the Waxy transcript and the GBSS I protein and, finally, produced the amylose free phenotype. Three SNPs in the seventh exon in the accession Z1337 (HP I-6) did not significantly change the level of Waxy transcript, the GBSS I protein, and starch properties, except obviously reducing the breakdown value of starch viscosity and extending the peak time. A total of 84 DNA polymorphic sites were found in the noncoding regions. A 403 bp deletion at 5?UTR in the accession Z1979 (HP I-3) had low transcript level, low GBSS I protein level, and low amylose content due to the deletion of cis-acting DNA regulatory elements. A 191 bp insertion and a 15 bp insertion in the first intron and second exons, respectively, may be closely related to a higher transcript level of the Waxy gene and significant differences in some starch properties of the Waxy I DNA group as compared to the Waxy II DNA group. This study indicates the specific variations of the Waxy gene have a great effect on amylose synthesis and starch properties of hull-less barley, which could be very useful to produce new barley with variable starch properties.

分类号:

  • 相关文献
作者其他论文 更多>>