Integration of Unmanned Aerial Vehicle Spectral and Textural Features for Accurate Above-Ground Biomass Estimation in Cotton
文献类型: 外文期刊
第一作者: Chen, Maoguang
作者: Chen, Maoguang;Yin, Caixia;Liu, Haijun;Wang, Zhenyang;Jiang, Pingan;Tang, Qiuxiang;Lin, Tao;Lin, Tao;Ali, Saif;Jin, Xiuliang
作者机构:
关键词: unmanned aerial vehicle (UAV); cotton; above-ground-biomass (AGB); spectral features; textural features
期刊名称:AGRONOMY-BASEL ( 影响因子:3.3; 五年影响因子:3.7 )
ISSN:
年卷期: 2024 年 14 卷 6 期
页码:
收录情况: SCI
摘要:
Timely and accurate estimation of Above-Ground-Biomass (AGB) in cotton is essential for precise production monitoring. The study was conducted in Shaya County, Aksu Region, Xinjiang, China. It employed an unmanned aerial vehicle (UAV) as a low-altitude monitoring platform to capture multispectral images of the cotton canopy. Subsequently, spectral features and textural features were extracted, and feature selection was conducted using Pearson's correlation (P), Principal Component Analysis (PCA), Multivariate Stepwise Regression (MSR), and the ReliefF algorithm (RfF), combined with the machine learning algorithm to construct an estimation model of cotton AGB. The results indicate a high consistency between the mean (MEA) and the corresponding spectral bands in textural features with the AGB correlation. Moreover, spectral and textural feature fusion proved to be more stable than models utilizing single spectral features or textural features alone. Both the RfF algorithm and ANN model demonstrated optimization effects on features, and their combination effectively reduced the data redundancy while improving the model performance. The RfF-ANN-AGB model constructed based on the spectral and textural features fusion worked better, and using the features SIPI2, RESR, G_COR, and RE_DIS, exhibited the best performance, achieving a test sets R2 of 0.86, RMSE of 0.23 kg
分类号:
- 相关文献
作者其他论文 更多>>
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Maize tassel number and tasseling stage monitoring based on near-ground and UAV RGB images by improved YoloV8
作者:Yu, Xun;Yin, Dameng;Jin, Xiuliang;Yu, Xun;Yin, Dameng;Xu, Honggen;Nie, Chenwei;Bai, Yi;Ming, Bo;Jin, Xiuliang;Espinosa, Francisco Pinto;Schmidhalter, Urs;Sankaran, Sindhuja;Cui, Ningbo;Cui, Ningbo;Wu, Wenbin
关键词:RGB images; Deep learning; Tasseling stage; Maize tassel; UAV; Dynamic monitoring
-
Genomic analyses reveal the stepwise domestication and genetic mechanism of curd biogenesis in cauliflower
作者:Chen, Rui;Yao, Xingwei;Zhang, Xiaoli;Yang, Yingxia;Lyu, Mingjie;Wang, Qian;Zhang, Guan;Wang, Mengmeng;Li, Yanhao;Duan, Lijin;Xie, Tianyu;Li, Haichao;Yang, Yuyao;Zhang, Hong;Guo, Yutong;Jia, Guiying;Sun, Deling;Chen, Ke;Su, Xiao;Lin, Tao;Chen, Ke;Li, Haichao;Yang, Yuyao;Zhang, Hong;Guo, Yutong;Jia, Guiying;Ge, Xianhong;Sarris, Panagiotis F.;Sarris, Panagiotis F.
关键词:
-
Classification of field wheat varieties based on a lightweight G-PPW-VGG11 model
作者:Pan, Yu;Dong, Jihua;Zhao, Yonghang;Li, Shuanming;Pan, Yu;Yu, Xun;Dong, Jihua;Jin, Xiuliang;Pan, Yu;Zhao, Yonghang;Li, Shuanming;Pan, Yu;Dong, Jihua;Zhao, Yonghang;Li, Shuanming;Yu, Xun;Jin, Xiuliang
关键词:classification; lightweight; field environment; G-PPW-VGG11; partially mixed depth separable convolution; Android
-
Enhancing precision of root-zone soil moisture content prediction in a kiwifruit orchard using UAV multi-spectral image features and ensemble learning
作者:Zhu, Shidan;Cui, Ningbo;Guo, Li;Jiang, Shouzheng;Wu, Zongjun;Lv, Min;Chen, Fei;Liu, Quanshan;Wang, Mingjun;Jin, Huaan;Jin, Xiuliang
关键词:Root zone soil moisture content; Optimal band combination algorithm; Ensemble learning model; Planted-by-planted mapping
-
A model suitable for estimating above-ground biomass of potatoes at different regional levels
作者:Liu, Yang;Fan, Yiguang;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:Potato; Hierarchical linear model; Hyperspectral; Meteorological data; Biomass
-
Accurately estimate soybean growth stages from UAV imagery by accounting for spatial heterogeneity and climate factors across multiple environments
作者:Che, Yingpu;Gu, Yongzhe;Bai, Dong;Li, Delin;Li, Jindong;Li, Ying-hui;Jin, Xiuliang;Qiu, Li-juan;Che, Yingpu;Li, Jindong;Li, Ying-hui;Jin, Xiuliang;Qiu, Li-juan;Che, Yingpu;Zhao, Chaosen;Wang, Ruizhen;Wang, Qiang;Qiu, Hongmei;Huang, Wen;Yang, Chunyan;Zhao, Qingsong;Liu, Like;Wang, Xing;Xing, Guangnan;Hu, Guoyu;Shan, Zhihui
关键词:Soybean growth stages; Multi-environment trials; Photothermal accumulation area; Spatial heterogeneity; Unmanned aircraft vehicle