Graph pangenome reveals the regulation of malate content in blood-fleshed peach by NAC transcription factors

文献类型: 外文期刊

第一作者: Chen, Wenbo

作者: Chen, Wenbo;Xie, Qi;Fu, Jia;Li, Shaojia;Shi, Yanna;Lu, Jiao;Zhao, Yingjie;Li, Baijun;Zhang, Bo;Chen, Kunsong;Chen, Wenbo;Li, Shaojia;Shi, Yanna;Zhang, Bo;Chen, Kunsong;Chen, Wenbo;Li, Shaojia;Shi, Yanna;Zhang, Bo;Grierson, Donald;Chen, Kunsong;Zhang, Yuanyuan;Ma, Ruijuan;Yu, Mingliang;Grierson, Donald;Fei, Zhangjun;Fei, Zhangjun

作者机构:

关键词: Graph pangenome; Peach; Malate content; Blood-fleshed; NAC

期刊名称:GENOME BIOLOGY ( 影响因子:9.4; 五年影响因子:16.3 )

ISSN: 1474-760X

年卷期: 2025 年 26 卷 1 期

页码:

收录情况: SCI

摘要: BackgroundFruit acidity and color are important quality attributes in peaches. Although there are some exceptions, blood-fleshed peaches typically have a sour taste. However, little is known about the genetic variations linking organic acid and color regulation in peaches.ResultsHere, we report a peach graph-based pangenome constructed from sixteen individual genome assemblies, capturing abundant structural variations and 82.3 Mb of sequences absent in the reference genome. Pangenome analysis reveals a long terminal repeat retrotransposon insertion in the promoter of the NAC transcription factor (TF) PpBL in blood-fleshed peaches, which enhances PpBL expression. Genome-wide association study identifies a significant association between PpBL and malate content. Silencing PpBL in peach fruit and ectopic overexpression of PpBL in tomatoes confirm that PpBL is a positive regulator of malate accumulation. Furthermore, we demonstrate that PpBL works synergistically with another NAC TF, PpNAC1, to activate the transcription of the aluminum-activated malate transporter PpALMT4, leading to increased malate content.ConclusionsThese findings, along with previous research showing that PpBL and PpNAC1 also regulate anthocyanin accumulation, explain the red coloration and sour taste in blood-fleshed peach fruits.

分类号:

  • 相关文献
作者其他论文 更多>>