Transcriptomic analysis of hub genes regulating albinism in light- and temperature-sensitive albino tea cultivars 'Zhonghuang 1' and 'Zhonghuang 2'
文献类型: 外文期刊
第一作者: Wang, Lu
作者: Wang, Lu;Di, Taimei;Li, Nana;Peng, Jing;Wu, Yedie;He, Mingming;Hao, Xinyuan;Huang, Jianyan;Ding, Changqing;Yang, Yajun;Wang, Xinchao
作者机构:
关键词: Albino; Chloroplast; Tea plant (Camellia sinensis); Transcriptomic analysis
期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:5.1; 五年影响因子:5.3 )
ISSN: 0167-4412
年卷期: 2024 年 114 卷 3 期
页码:
收录情况: SCI
摘要: Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars. ZH1 and ZH2 were identified as light- and temperature-sensitive albino tea cultivars. WGCNAidentified hub genes regulating the albino phenotype of ZH1 and ZH2.
分类号:
- 相关文献
作者其他论文 更多>>
-
Geographical distribution and genetic analysis reveal recent global invasion of whitefly, Bemisia tabaci, primarily associated with only three haplotypes
作者:Peng, Jing;Lv, Xiao-Lu;Peng, Jing;Ran, Xiao-Tong;Qiu, Bao-Li;Jindal, Vikas;Banta, Geetika;Gupta, Virash K.;Mohindru, Bharathi;Kumar, Vivek;Osborne, Lance S.;Wu, Qing-Jun;Mckenzie, Cindy L.;Ahmed, Muhammad Z.
关键词:
Bemisia tabaci ; China; cryptic species; haplotypes; India; origin -
A highly efficient callus model to study gene functions: HbSRPP1 may play a role in the elongation of cis-1,4-polyisoprene in the rubber tree
作者:Tan, Deguan;Guo, Zihan;Fu, Lili;Yu, Ying;Peng, Jing;Huang, Yuchun;Zhou, Xue;Sun, Xuepiao;Zhang, Jiaming;Tan, Deguan;Guo, Zihan;Zhang, Jiaming;Tan, Deguan;Peng, Jing;Huang, Yuchun;Zhou, Xue;Zhang, Jiaming
关键词:Rubber tree; Callus model; Laticifer cell; Rubber biosynthesis; Function study; Laticifer-specific promoter; HbSRPP1
-
Revealing the Molecular Regulatory Mechanism of Flavonoid Accumulation in Tender Leaves of Tea Plants by Transcriptomic and Metabolomic Analyses
作者:Shan, Ruiyang;You, Xiaomei;Kong, Xiangrui;Zhang, Yazhen;Li, Xinlei;Chen, Changsong;Zhang, Yongheng;Wang, Lu;Wang, Xinchao
关键词:
Camellia sinensis ; transcriptomics; flavonoids; regulatory network -
Structural characterization and hypolipidemic activity of a hetero-galactan purified from Sanghuangporus vaninii based on modulation of TLR4/NF-κB pathway
作者:Hao, Jie;Zhu, Yanfeng;Li, Zhige;Wang, Lu;Qu, Yidi;Wang, Di;Zhang, Yongfeng;Li, Lanzhou;Wang, Di;Yu, Hailong;Qi, Liangliang
关键词:Sanghuangporus vaninii; Polysaccharide; Hypolipidemic efficacy; Inflammation; TLR4/NF-kappa B
-
Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants
作者:Jiang, Qi;Ding, Changqing;Feng, Lingjia;Wu, Zhenwei;Liu, Yujie;He, Lintong;Liu, Chuande;Wang, Lu;Zeng, Jianming;Huang, Jianyan;Ye, Meng
关键词:
-
CsCIPK20 Improves Tea Plant Cold Tolerance by Modulating Ascorbic Acid Synthesis Through Attenuation of CsCSN5-CsVTC1 Interaction
作者:Di, Taimei;Wu, Yedie;Wang, Jie;He, Mingming;Huang, Jianyan;Li, Nana;Hao, Xinyuan;Ding, Changqing;Zeng, Jianming;Yang, Yajun;Wang, Xinchao;Wang, Lu
关键词:ascorbic acid; CsCIPK20; CsVTC1; low temperature
-
CsCBF1/CsZHD9-CsMADS27, a critical gene module controlling dormancy and bud break in tea plants
作者:Hao, Xinyuan;Tang, Junwei;Chen, Yao;Huang, Chao;Zhang, Weifu;Liu, Ying;Wang, Lu;Ding, Changqing;Yang, Yajun;Wang, Xinchao;Chen, Yao;Yue, Chuan;Liu, Ying;Dai, Wenhao;Horvath, David P.
关键词:bud dormancy; bud break; MADS-box; gene function; regulatory network;
Camellia sinensis