Physiological and Transcriptome Analysis Provide Insights into the Effects of Low and High Selenium on Methionine and Starch Metabolism in Rice Seedlings

文献类型: 外文期刊

第一作者: Yang, Yang

作者: Yang, Yang;Zhang, Jiarui;Sun, Lijuan;Qin, Qin;Yang, Shiyan;Wang, Jun;Sun, Yafei;Xue, Yong

作者机构:

关键词: selenium; rice; transcriptome; physiological

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:4.9; 五年影响因子:5.7 )

ISSN: 1661-6596

年卷期: 2025 年 26 卷 4 期

页码:

收录情况: SCI

摘要: Selenium (Se) is an essential micronutrient for the human body and is closely linked to health. Rice (Oryza sativa L.), as a major staple food globally, is the primary source of Se intake for humans. To better achieve Se biofortification in rice, it is crucial to understand the molecular mechanisms behind rice's response to different Se concentrations. This study investigates the morphological and transcriptomic responses of rice seedlings to low (1 mu M, LSe) and high (10 mu M, HSe) Se concentrations compared to a control (CK). Morphological analyses revealed that LSe promoted growth, enhancing shoot and root length and biomass, whereas HSe treatment inhibited these parameters, indicating Se's dual role in rice growth. Notably, the most significant promotion of rice growth was observed at the Se concentration of 1 mu M. The organic Se content and antioxidant enzyme activities (SOD, POD and CAT) in rice seedlings also reached their maximum values simultaneously. Total RNA was extracted for transcriptome sequencing, and differential gene expression analysis was conducted using DESeq2. Transcriptomic sequencing highlighted distinct responses under LSe and HSe conditions. Gene ontology (GO) enrichment analysis revealed significant involvement in processes related to oxidoreductase activity and cellular structures. KEGG pathway analysis emphasized that Se treatments notably enhanced the glutathione metabolism pathway, which is crucial for antioxidant defense. Additionally, significant changes were observed in starch and sucrose metabolism and cysteine (Cys) and methionine (Met) metabolism pathways, showing upregulation under LSe treatment and downregulation under HSe. Six key genes were validated using qRT-PCR, confirming their differential expression under varied Se treatments. The Cys, Met and starch content assays as well as qRT-PCR data demonstrated that LSe promoted the synthesis and accumulation of Cys, Met and starch, supporting enhanced growth and antioxidant capacity. Conversely, HSe inhibited the synthesis and accumulation of Cys, Met and starch in rice seedlings, and these data were also consistent with the physiological phenotype. These findings provide insights into the molecular mechanisms by which rice seedlings adapt to varying Se levels, with implications for Se biofortification and stress management strategies in crops.

分类号:

  • 相关文献
作者其他论文 更多>>