Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed (Brassica napus L.) Seedlings

文献类型: 外文期刊

第一作者: Raza, Ali

作者: Raza, Ali;Su, Wei;Jia, Ziqi;Luo, Dan;Zhang, Yi;Gao, Ang;Hussain, Muhammad Azhar;Mehmood, Sundas Saher;Cheng, Yong;Lv, Yan;Zou, Xiling

作者机构:

关键词: abiotic stress; antioxidant defense system; gene expression; marker genes; osmoprotectants; trehalose metabolism; chilling stress

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )

ISSN: 1664-462X

年卷期: 2022 年 13 卷

页码:

收录情况: SCI

摘要: Cold stress (CS) severely affects several physiological, biochemical, and molecular mechanisms and limits the growth and production of rapeseed (Brassica napus L.). Trehalose (Tre) acts as a growth modulator, which is extensively used to improve the tolerance to multiple plant stresses. Further, Tre also serves as an external force in inducing plant signaling molecules, regulating the expression of stress-responsive genes, and enhancing the CS tolerance in plants. Nevertheless, the importance of exogenous Tre in improving the CS tolerance in rapeseed is still unclear. Therefore, the current study was designed to get mechanistic insights into Tre-mediated CS tolerance in rapeseed seedlings. To explore the Tre role, we designed four treatments [control (CK), CK + 20 mM L-1 Tre, Cold, and Cold + 20 mM L-1 Tre] and three CS conditions (4, 0, and -4 degrees C). The results showed that Tre treatments significantly mitigated the adverse effects of CS on the seedlings and increased the survival rate of Tre-treated seedlings under CS conditions. The exogenous Tre dramatically increased the contents of osmoprotectants, including the soluble sugar (SS), soluble protein (SP), and proline (Pro), and the activities of antioxidant enzymes, such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were also increased under CS conditions. Additionally, Tre decreased the malondialdehyde (MDA) contents to protect the rapeseed seedlings. Moreover, Tre also remarkably augmented the expression levels of antioxidant genes (CAT12, POD34, and FSD7), CS-responsive marker genes (CBF1, CBF2, CBF4, COR6.6, COR15, COR25, COL1, and KIN1), and Tre-biosynthesis genes (TPS4, TPS8, and TPS9). Briefly, exogenous Tre not only regulates the antioxidant and osmotic balance, but it also significantly participates in Tre metabolism and signaling network to improve the CS tolerance in rapeseed. Thus, Tre-induced supervisory connections between physiological or/and biochemical attributes provide information to dissect the mechanisms of Tre-mediated CS tolerance.

分类号:

  • 相关文献
作者其他论文 更多>>