MP-Net: An efficient and precise multi-layer pyramid crop classification network for remote sensing images
文献类型: 外文期刊
第一作者: Xu, Changhong
作者: Xu, Changhong;Yan, Jingwen;Gao, Maofang;Jin, Yunxiang;Wu, Wenbin;Yang, Guijun;Yang, Guijun
作者机构:
关键词: Crop classification; Satellite data; Pyramid pooling module; MP -Net model
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 212 卷
页码:
收录情况: SCI
摘要: Accurate crop classification map is of great significance in various fields such as the survey of agricultural resource, the analysis of existing circumstance on land application, the yield estimation of crop and the disaster warning. The methods based on machine learning and deep learning are popularly used in crop classification and recognition of remote sensing images. However, the crop classification task based on neural networks still faces significant challenges due to the spatial and temporal distribution of crops and the inherent characteristics of remote sensing images. Therefore, this study proposes the multi-layer pyramid crop classification network (MPNet) to solve the above problems. To reduce the feature loss during the crop extraction, the proposed model uses the pyramid pooling module to improve the ability of global information acquisition, and the information concatenation module to retain the upper features. Using the GF-6 and Sentinel-2 satellite data, the proposed model was tested in Erhai Lake Basin and Beian City. Compared with other five deep learning models, such as FCN, SegNet, U-Net, PSPNet and DeepLabv3+, the experimental results indicate that the proposed model achieves the highest accuracy in both study areas. Meanwhile, the proposed model has the advantages of short training time and high efficiency under the same running conditions. Overall, this study is beneficial to improve the efficiency and accuracy of crop classification task in the unbalanced temporal and spatial distribution. It also brings a feasible scheme for crop classification tasks in complex growing areas. The code has been publicly available at https://github.com/Xu-Chang-Hong/MP-Net.
分类号:
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Gully erosion susceptibility mapping considering seasonal variations of NDVI using a machine learning approach in the Mollisol region of China
作者:Gao, Ruilu;Gao, Maofang;Yao, Shuihong;Wen, Yanru
关键词:Vegetation cover; Crop cover variation; Remote sensing technique; Gully susceptibility; Random forest model
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Extreme surface solar ultraviolet radiation events reduce maize yields in China
作者:Guan, Haixiang;Huang, Jianxi;Li, Xuecao;Zeng, Yelu;Su, Wei;Miao, Shuangxi;Zhu, Peng;Huang, Jianxi;Huang, Jianxi;Li, Xuecao;Zeng, Yelu;Su, Wei;Miao, Shuangxi;Jin, Zhenong;Ma, Yuyang;Wu, Wenbin;Wu, Wenbin;Wu, Bingfang;Wu, Bingfang
关键词:
-
Crop sample prediction and early mapping based on historical data: Exploration of an explainable FKAN framework
作者:Cheng, Feifei;Qiu, Bingwen;Yang, Peng;Wu, Wenbin;Yu, Qiangyi;Qian, Jianping;Wu, Bingfang;Chen, Jin;Chen, Xuehong;Tubiello, Francesco N.;Tryjanowski, Piotr;Takacs, Viktoria;Duan, Yuanlin;Lin, Lihui;Wang, Laigang;Zhang, Jianyang;Dong, Zhanjie
关键词:Historical Data; Sample generation; Crop mapping; Interpretability; Google Earth Engine