Genome-wide association studies reveal genetic diversity and regulatory loci underlying dwarfing traits in banana

文献类型: 外文期刊

第一作者: Li, Yuqi

作者: Li, Yuqi;Yan, Liu;Wang, Yi;Li, Wei;Han, Zhenhai;Li, Yuqi;Feng, Junting;Yan, Liu;Liu, Juhua;Cai, Bingyu;Li, Kai;Zhao, Yankun;Chen, Yufeng;Cheng, Qifeng;Cao, Miaomiao;Wei, Yongzan;Wang, Wei;Xie, Jianghui;Li, Yuqi;Li, Wei;Han, Zhenhai;Wei, Shouxing;Hu, Huigang;Xie, Yixian

作者机构:

关键词: GWAS; hormone; molecular marker; Musa; plant height

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:9.3; 五年影响因子:10.8 )

ISSN: 1672-9072

年卷期: 2025 年

页码:

收录情况: SCI

摘要: Bananas (Musa ssp.) are globally important staple crops increasingly constrained by biotic stressors, climatic instability, and the high labor demands of cultivation. The genetic improvement of dwarf phenotypes offers a strategic pathway to enhance mechanization and reduce production costs. In this study, we have carried out whole-genome resequencing of 300 Musa accessions to analyze genome-wide allelic diversity and identify loci associated with shoot architecture. Our analysis uncovered extensive genetic variation within the A subgenome, pivotal for environmental adaptability, and detected introgression from Musa itinerans (subgroup A) into cultivated varieties (subgroup F), suggesting a broadened genetic base amenable to breeding. A genome-wide association study (GWAS) pinpointed MabHLH30 as a crucial gene associated plant stature. Functional validation confirmed MabHLH30 as a critical regulator of plant stature and leaf morphology. Leveraging this finding, we developed molecular markers for MabHLH30, enabling marker-assisted selection (MAS) to accelerate the breeding of compact, high-yielding cultivars. Collectively, these results provide a genomic framework for the targeted improvement of banana architecture and represent a valuable resource for cultivar development under diverse agroecological conditions.

分类号:

  • 相关文献
作者其他论文 更多>>