Molecular Cloning and Function Analysis of Two SQUAMOSA-Like MADS-Box Genes From Gossypium hirsutum L.
文献类型: 外文期刊
第一作者: Wenxiang Zhang
作者: Wenxiang Zhang;Shuli Fan;Chaoyou Pang;Hengling Wei;Jianhui Ma;Meizhen Song;Shuxun Yu
作者机构:
关键词: Arabidopsis transformation;flowering time;MADS-box;SQUAMOSA-like;overexpression
期刊名称:Journal of Integrative Plant Biology ( 影响因子:7.061; 五年影响因子:6.002 )
ISSN: 1672-9072
年卷期: 2013 年 55 卷 7 期
页码:
收录情况: CSCD
摘要: The MADS-box genes encode a large family of transcription factors having diverse roles in plant development. The SQUAMOSA (SQUA)/APETALA1 (AP1)/FRUITFULL (FUL) subfamily genes are essential regulators of floral transition and floral organ identity. Here we cloned two MADS-box genes, GhMADS22 and GhMADS23, belonging to the SQUA/AP1/FUL subgroup from Gossypium hirsutum L. Phylogenetic analysis and sequence alignment showed that GhMADS22 and GhMADS23 belonged to the euFUL and euAP1 subclades, respectively. The two genes both had eight exons and seven introns from the start codon to the stop codon according to the alignment between the obtained cDNA sequence and the Gossypium raimondii L. genome sequence. Expression profile analysis showed that GhMADS22 and GhMADS23 were highly expressed in developing shoot apices, bracts, and sepals. Gibberellic acid promoted GhMADS22 and GhMADS23 expression in the shoot apex. Transgenic Arabidopsis lines overexpressing 35S::GhMADS22 had abnormal flowers and bolted earlier than wild type under long-day conditions (16?h light/8?h dark). Moreover, GhMADS22 overexpression delayed floral organ senescence and abscission and it could also respond to abscisic acid. In summary, GhMADS22 may have functions in promoting flowering, improving resistance and delaying senescence for cotton and thus it may be a candidate target for promoting early-maturation in cotton breeding.
分类号:
- 相关文献
作者其他论文 更多>>
-
Mepiquat chloride-priming induced salt tolerance during seed germination of cotton (Gossypium hirsutum L.) through regulating water transport and K+/Na+ homeostasis
作者:Ning Wang;Xiangru Wang;Jianbin Shi;Xiaohong Liu;Qinghua Xu;Hong Zhou;Meizhen Song;Gentu Yan
关键词:Osmotic adjustment; Ion homeostasis; Tissue tolerance; Amelioration; Seed priming; Gossypium hirsutum L.
-
Comprehensive analyses of ZFP gene family and characterization of expression profiles during plant hormone response in cotton
作者:Peng He;Yan Yang;Zihua Wang;Peng Zhao;Yi Yuan;Li Zhang;Yueqin Ma;Chaoyou Pang;Jianing Yu;Guanghui Xiao
关键词:Cotton; Zinc finger proteins; Plant hormone; Expression patterns; Fiber development
-
A comparative analysis of small RNAs between two Upland cotton backcross inbred lines with different fiber length: Expression and distribution
作者:Guoyuan Liu;Man Wu;Wenfeng Pei;Xihua Li;Nuohan Wang;Jianjiang Ma;Xinshan Zang;Shuxun Yu;Jinfa Zhang;Jiwen Yu
关键词:Allopolyploid Gossypium; Fiber elongation; miRNA; QTL hotspots
-
A targeted QTL analysis for fiber length using a genetic population between two introgressed backcrossed inbred lines in upland cotton (Gossypium hirsutum)
作者:Guoyuan Liu;Wenfeng Pei;Dan Li;Jianjiang Ma;Yupeng Cui;Nuohan Wang;Jikun Song;Man Wu;Libei Li;Xinshan Zang;Shuxun Yu;Jinfa Zhang;Jiwen Yu
关键词:Gossypium; Single-nucleotide polymorphism; Fiber length; Quantitative trait locus
-
Differentially expressed genes between two groups of backcross inbred lines differing in fiber length developed from Upland x Pima cotton
作者:Man Wu;Longyun Li;Guoyuan Liu;Xihua Li;Wenfeng Pei;Xingli Li;Jinfa Zhang;Shuxun Yu;Jiwen Yu
关键词:Gossypium barbadense; Gossypium hirsutum; Fiber quality traits; Affymetrix microarray; Quantitative RT-PCR
-
Fine mapping and molecular characterization of the virescent gene vsp in Upland cotton (Gossypium hirsutum)
作者:Guangzhi Mao;Hengling Wei;Wei Hu;Qiang Ma;Meng Zhang;Hantao Wang;Shuxun Yu
关键词:
-
Identification of Loci and Candidate Genes Responsible for Fiber Length in Upland Cotton (Gossypium hirsutum L.) via Association Mapping and Linkage Analyses
作者:Chi Zhang;Libei Li;Qibao Liu;Lijiao Gu;Jianqin Huang;Hengling Wei;Hantao Wang;Shuxun Yu
关键词:upland cotton; fiber length; GWAS; QTL; sucrose synthesis