Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil
文献类型: 外文期刊
第一作者: Li, Fang
作者: Li, Fang;Zhang, Jiabao;Li, Fang;Chen, Lin;Zhang, Jiabao;Zhang, Congzhi;Ning, Qi;Redmile-Gordon, Marc;Li, Wei
作者机构:
关键词: carbon storage; Mortierella elongata; nutrient availability; organic fertilization; soil improvement
期刊名称:LAND DEGRADATION & DEVELOPMENT ( 影响因子:4.977; 五年影响因子:5.291 )
ISSN: 1085-3278
年卷期: 2018 年 29 卷 6 期
页码:
收录情况: SCI
摘要: The addition of organic amendments contributes substantially to improvements in soil quality and prevents soil degradation. However, very little is known about the responses of dominant fungal strains to organic fertilizers or their functions in the nutrient transformations and crop growth promotion. Here, soils and maize roots were collected from a 35-year field experiment treated with composted soybean cake. The fungal communities in the bulk soil, rhizosphere, and endosphere were analyzed by deep amplicon sequencing of the internal transcribed spacer region gene. Overall, the soil fungal community was dominated by the phyla Ascomycota, Basidiomycota, and Zygomycota. Organic amendments changed the fungal community composition, with significant increase in the relative abundances of Mortierella, Fusarium, and Chaetomiceae in the bulk and rhizosphere soils. Mortierella elongata was the most successful fungi responding to organic inputs as seen by the surge in abundance. Genome characteristics of M. elongata indicated that M. elongata possessed the functional capacity to degrade a range of toxic organics, and thereby improve soil health. Furthermore, M. elongata's capacity to compose recalcitrant substances that can contribute to pools of long-term stable SOM was confirmed. These findings suggest that M. elongata may be mechanistic in sequestering C in soil. Inoculations of M. elongata into soil significantly increased the levels of plant indole acetic acid and plant biomass. Soil phosphatase and beta-glucosidase activities were also improved. Our study suggests that M. elongata can defend against soil degradation, improve soil health, and stimulate production of plant growth hormones.
分类号:
- 相关文献
作者其他论文 更多>>
-
Effects of different hydrocolloids on the 3D printing and thermal stability of chicken paste
作者:Zhao, Nanqi;Liu, Ziyao;Chen, Lin;Hu, Yayun;Feng, Xianchao;Guo, Chaofan;Han, Minyi;Huang, Feng;Kang, Zhuangli
关键词:Hydrocolloids; 3D printing; Post-processing stability
-
Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress
作者:Wang, Yubin;Liu, Wei;Li, Wei;Wang, Caijie;Dai, Haiying;Xu, Ran;Zhang, Yanwei;Zhang, Lifeng;Wang, Yubin;Liu, Wei;Li, Wei;Wang, Caijie;Dai, Haiying;Xu, Ran;Zhang, Yanwei;Zhang, Lifeng
关键词:soybean; salt stress; metabolome; transcriptome; flavonoid; regulatory mechanism
-
Comparison of Volatile and Nonvolatile Metabolites in Black Tea under Four Second-Drying Methods Using Widely Targeted Metabolomics
作者:Lan, Tianmeng;Tu, Zheng;Ye, Yang;Zeng, Qingbin;Chen, Lin;Liu, Yueyun;He, Weizhong
关键词:second-drying; black tea; metabolomics; nonvolatile metabolites; volatile metabolites
-
Two unprecedented 2-(2-phenethyl)chromone dimers from red soil agarwood of Aquilaria crassna
作者:Chai, Hong-Xing;Jiang, Bei;Dai, Hao-Fu;Chai, Hong-Xing;Wang, Hao;Zeng, Jun;Dong, Wen-Hua;Mei, Wen-Li;Li, Wei;Dai, Hao-Fu;Wang, Hao;Zeng, Jun;Dong, Wen-Hua;Mei, Wen-Li;Li, Wei;Dai, Hao-Fu
关键词:Aquilaria crassna; Red soil agarwood; 2-(2-Phenylethyl)chromone dimers; Anti-inflammatory activity
-
Naringin's Alleviation of the Inflammatory Response Caused by Actinobacillus pleuropneumoniae by Downregulating the NF-κB/NLRP3 Signalling Pathway
作者:Huang, Qilin;Jing, Xiaohan;Liu, Chen;Ahmad, Saad;Zhao, Guanyu;Li, Zhaorong;Qiu, Zhengying;Xin, Ruihua;Huang, Qilin;Jing, Xiaohan;Liu, Chen;Ahmad, Saad;Zhao, Guanyu;Li, Zhaorong;Qiu, Zhengying;Xin, Ruihua;Huang, Qilin;Jing, Xiaohan;Liu, Chen;Ahmad, Saad;Zhao, Guanyu;Li, Zhaorong;Qiu, Zhengying;Xin, Ruihua;Li, Wei;Huang, Lina
关键词:Actinobacillus pleuropneumoniae (APP); inflammatory injury; NLRP3 inflammasome; protein interactions; naringin (NAR); anti-inflammatory mechanism
-
The nematode effector calreticulin competes with the high mobility group protein OsHMGB1 for binding to the rice calmodulin-like protein OsCML31 to enhance rice susceptibility to Meloidogyne graminicola
作者:Liu, Jing;Zhang, Jiaqian;Wei, Ying;Su, Wen;Li, Wei;Wang, Bing;Dai, Liangying;Liu, Jing;Gheysen, Godelieve;Zhang, Jiaqian;Wei, Ying;Peng, Deliang;Peng, Huan;Peng, Huan;Dai, Liangying
关键词:calmodulin-like protein; calreticulin; effector; Meloidogyne graminicola; OsHMGB1; plant defense
-
A genome-wide study of the lipoxygenase gene families in Medicago truncatula and Medicago sativa reveals that MtLOX24 participates in the methyl jasmonate response
作者:Xu, Lei;Zhu, Xiaoxi;Liu, Yajiao;Sod, Bilig;Li, Mingna;Chen, Lin;Kang, Junmei;Yang, Qingchuan;Long, Ruicai;Xu, Lei;Yang, Qingchuan;Yi, Fengyan
关键词:Medicago; Lipoxygenase; Methyl jasmonate; Arabidopsis thaliana; Overexpression