Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat
文献类型: 外文期刊
第一作者: Hassan, Muhammad Adeel
作者: Hassan, Muhammad Adeel;Yang, Mengjiao;Rasheed, Awais;Xia, Xianchun;Xiao, Yonggui;He, Zhonghu;Yang, Mengjiao;Rasheed, Awais;He, Zhonghu;Jin, Xiuliang
作者机构:
关键词: bread wheat; SVIs; senescence rate; UAV; yield stability
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN: 2072-4292
年卷期: 2018 年 10 卷 6 期
页码:
收录情况: SCI
摘要: Detection of senescence's dynamics in crop breeding is time consuming and needs considerable details regarding its rate of progression and intensity. Normalized difference red-edge index (NDREI) along with four other spectral vegetative indices (SVIs) derived from unmanned aerial vehicle (UAV) based spatial imagery, were evaluated for rapid and accurate prediction of senescence. For this, 32 selected winter wheat genotypes were planted under full and limited irrigation treatments. Significant variations for all five SVIs: green normalize difference vegetation index (GNDVI), simple ratio (SR), green chlorophyll index (GCI), red-edge chlorophyll index (RECI), and normalized difference red-edge index (NDREI) among genotypes and between treatments, were observed from heading to late grain filling stages. The SVIs showed strong relationship (R-2 = 0.69 to 0.78) with handheld measurements of chlorophyll and leaf area index (LAI), while negatively correlated (R-2 = 0.75 to 0.77) with canopy temperature (CT) across the treatments. NDREI as a new SVI showed higher correlations with ground data under both treatments, similarly as exhibited by other four SVIs. There were medium to strong correlations (r = 0.23-0.63) among SVIs, thousand grain weight (TGW) and grain yield (GY) under both treatments. Senescence rate was calculated by decreasing values of SVIs from their peak values at heading stage, while variance for senescence rate among genotypes and between treatments could be explained by SVIs variations. Under limited irrigation, 10% to 15% higher senescence rate was detected as compared with full irrigation. Principle component analysis corroborated the negative association of high senescence rate with TGW and GY. Some genotypes, such as Beijing 0045, Nongda 5181, and Zhongmai 175, were selected with low senescence rate, stable TGW and GY in both full and limited irrigation treatments, nearly in accordance with the actual performance of these cultivars in field. Thus, SVIs derived from UAV appeared as a promising tool for rapid and precise estimation of senescence rate at maturation stages.
分类号:
- 相关文献
作者其他论文 更多>>
-
Synergistic use of stay-green traits and UAV multispectral information in improving maize yield estimation with the random forest regression algorithm
作者:Liu, Yuan;Meng, Lin;Nie, Chenwei;Liu, Yadong;Song, Yang;Jin, Xiuliang;Liu, Yuan;Fan, Kaijian;Meng, Lin;Nie, Chenwei;Liu, Yadong;Song, Yang;Jin, Xiuliang;Cheng, Minghan
关键词:UAV multispectral; Maize yield; Stay-Green Index (SGI); Machine learning; Remote sensing
-
Research on variety identification of common bean seeds based on hyperspectral and deep learning
作者:Li, Shujia;Sun, Laijun;Zhang, Lingyu;Bai, Hongyi;Wang, Ziyue;Jin, Xiuliang;Feng, Guojun
关键词:Hyperspectral; Common bean; Convolutional neural network; Deep learning
-
Nitrogen management in rice under crop rotation and nitrogen level adjustment: Comprehensive responses of soil, roots, and plant growth
作者:Song, Yunsheng;Dong, Minghui;Jin, Meijuan;Gu, Junrong;Chen, Fei;Chen, Peifeng;Jin, Xiuliang;Hu, Yajie;Wang, Yuxuan
关键词:Crop rotation; Nitrogen management; Root morphology; Nitrogen use efficiency; Soil nutrient dynamics
-
DAFFnet: Seed classification of soybean variety based on dual attention feature fusion networks
作者:Zhang, Lingyu;Sun, Laijun;Li, Shujia;Jin, Xiuliang;Zhao, Xiangguang
关键词:Soybean seed; Classification; Deep learning; Neural networks; Attention mechanisms
-
A hybrid method for water stress evaluation of rice with the radiative transfer model and multidimensional imaging
作者:Zhang, Yufan;Shi, Liangsheng;Wang, Yu;Qiao, Han;Zha, Yuanyuan;Jin, Xiuliang
关键词:Water stress; Hyperspectral; Computer vision; Machine learning; Radiative transfer model
-
Estimating Stratified Biomass in Cotton Fields Using UAV Multispectral Remote Sensing and Machine Learning
作者:Hu, Zhengdong;Fan, Shiyu;Guo, Rensong;Wang, Liang;Zhang, Na;Cui, Jianping;Lin, Tao;Hu, Zhengdong;Fan, Shiyu;Tang, Qiuxiang;Bao, Longlong;Sarsen, Guldana;Li, Yabin;Zhang, Shuyuan;Jin, Xiuliang
关键词:UAV multispectral sensing; aboveground biomass; stratified estimation; vegetation index; machine learning; precision agriculture
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content