Underwater sea cucumber identification based on Principal Component Analysis and Support Vector Machine

文献类型: 外文期刊

第一作者: Qiao, Xi

作者: Qiao, Xi;Wan, Fanghao;Qiao, Xi;Bao, Jianhua;Li, Daoliang;Bao, Jianhua;Zhang, Hang

作者机构:

关键词: Underwater image processing; Feature extraction; Feature dimension reduction; Sea cucumber identification

期刊名称:MEASUREMENT ( 影响因子:3.927; 五年影响因子:3.778 )

ISSN: 0263-2241

年卷期: 2019 年 133 卷

页码:

收录情况: SCI

摘要: Underwater sea cucumber images are blurred and contain complex backgrounds. To improve the efficiency of sea cucumber identification, a method based on Principal Component Analysis (PCA) and Support Vector Machine (SVM) was proposed. Firstly, colours, textures and shapes of the sample images were extracted. Then, each feature was used separately to train SVM to identify the target. These features were sorted by identification rate. PCA-SVM was used to train the classifier, and the classifier was proposed to identify sea cucumber images. The accuracy of our proposed method was 98.55%, the time taken was 0.73 s. These results were compared with those of Genetic Algorithm (GA)-SVM (97.10%, 19.50 s), Ant Colony Optimization (ACO)-SVM (94.20%, 228.72 s), and Artificial Neural Networks (ANN) (97.10%, 1.25 s). PCA-SVM had the highest accuracy and the shortest time. Thus, PCA-SVM as proposed herein could satisfy the requirement that an underwater robot rapidly and precisely identify sea cucumber objects in a real environment. (C) 2018 Published by Elsevier Ltd.

分类号:

  • 相关文献
作者其他论文 更多>>