Genomic Prediction using Existing Historical Data Contributing to Selection in Biparental Populations: A Study of Kernel Oil in Maize

文献类型: 外文期刊

第一作者: Hao, Yangfan

作者: Hao, Yangfan;Yang, Xiaohong;He, Cheng;Wang, Jianhua;Wang, Hongwu;Zhang, Hongwei;Li, Dongdong;Li, Huihui;Wang, Guoying;Fu, Junjie

作者机构:

期刊名称:PLANT GENOME ( 影响因子:4.089; 五年影响因子:4.972 )

ISSN: 1940-3372

年卷期: 2019 年 12 卷 1 期

页码:

收录情况: SCI

摘要: Maize (Zea mays L.) kernel oil provides high-quality nutrition for animal feed and human health. A certain number of maize breeding programs seek to enhance oil concentration and composition. Genomic selection (GS), which entails selection based on genomic estimated breeding values (GEBVs), has proven to be efficient in breeding programs. Here, we estimate the robustness of predictions for the oil traits of maize kernels in biparental recombination inbred lines (RILs) using a GS model built based on an association population. Most statistical models, including ridge regression-best linear unbiased prediction (RR-BLUP), showed high prediction accuracy in the training population through a cross validation procedure. The training population size was more important than marker density and a statistical model for prediction performance. Using the optimized GS model, prediction of the biparental RIL population showed medium-high prediction accuracy (0.68) compared with prediction using only oil associated markers (r = 0.43). The potential to apply the GS model to another RIL population that is genetically less related to the training population was also examined, showing promising prediction accuracy in the top selected lines. Our results proved that genomic prediction using existing data is robust for the prediction of polygenic traits with moderate to high heritability.

分类号:

  • 相关文献
作者其他论文 更多>>