Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices
文献类型: 外文期刊
第一作者: Yue, Jibo
作者: Yue, Jibo;Tian, Qingjiu;Xu, Kaijian;Yue, Jibo;Yang, Guijun;Feng, Haikuan;Zhou, Chengquan;Yue, Jibo;Tian, Qingjiu;Xu, Kaijian
作者机构:
关键词: Unmanned aerial vehicle; Vegetation indices; Ultrahigh ground-resolution image; Image textures; Gray-tone spatial-dependence matrix; Reproductive growth stages
期刊名称:ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING ( 影响因子:8.979; 五年影响因子:9.948 )
ISSN: 0924-2716
年卷期: 2019 年 150 卷
页码:
收录情况: SCI
摘要: When dealing with multiple growth stages, estimates of above-ground biomass (AGB) based on optical vegetation indices (VIs) are difficult for two reasons: (i) optical VIs saturate at medium-to-high canopy cover, and (ii) organs that grow vertically (e.g., biomass of reproductive organs and stems) are difficult to detect by canopy spectral VIs. Although several significant improvements have been made for estimating AGB by using narrow band hyperspectral VIs, synthetic aperture radar, laser intensity direction and ranging, the crop surface model technique, and combinations thereof, applications of these new techniques have been limited by cost, availability, data-processing difficulties, and high dimensionality. The present study thus evaluates the use of ultrahigh-ground-resolution image textures, VIs, and combinations thereof to make multiple temporal estimates and maps of AGB covering three winter-wheat growth stages. The selected gray-tone spatial-dependence matrix based image textures (e.g., variance, entropy, data range, homogeneity, second moment, dissimilarity, contrast, correlation) are calculated from 1-, 2-, 5-, 10-, 15-, 20-, 25-, and 30-cm-ground-resolution images acquired by using an inexpensive RGB sensor mounted on an unmanned aerial vehicle (UAV). Optical-VI data were obtained by using a ground spectrometer to analyze UAV-acquired RGB images. The accuracy of AGB estimates based on optical VIs varies, with validation R-2: 0.59-0.78, root mean square error (RMSE): 1.22-1.59 t/ha, and mean absolute error (MAE): 1.03-1.27 t/ha. The most accurate AGB estimate was obtained by combining image textures and VIs, which gave R-2: 0.89, MAE: 0.67 t/ha, and RMSE: 0.82 t/ha. The results show that (i) the eight selected textures from ultrahigh-ground-resolution images were significantly related to AGB, (ii) the combined use of image textures from 1- to 30-cm-ground-resolution images and VIs can improve the accuracy of AGB estimates as compared with using only optical VIs or image textures alone; and (iii) high AGB values from winter-wheat reproductive growth stages can be accurately estimated by using this method; (iv) high estimates of winter-wheat AGB (8-14 t/ha) using the proposed combined method (DIS1, SE30, B460, B560, B670, EVI2 using MSR) show a 22.63% (nRMSE) improvement compared with using only spectral VIs (LCI, NDVI using MSR), and a 21.24% (nRMSE) improvement compared with using only image textures (COR1, DIS1, SE30, EN30 using MSR). Thus, the combined use of image textures and VIs can help improve estimates of AGB under conditions of high canopy coverage.
分类号:
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
An automated lightweight approach for detecting dead fish in a recirculating aquaculture system
作者:Zhou, Chengquan;Wang, Chenye;Sun, Dawei;Hu, Jun;Ye, Hongbao;Wang, Chenye
关键词:YOLO; Dead fish; RAS; Image processing; Lightweight framework
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index