Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices
文献类型: 外文期刊
第一作者: Yue, Jibo
作者: Yue, Jibo;Tian, Qingjiu;Xu, Kaijian;Yue, Jibo;Yang, Guijun;Feng, Haikuan;Zhou, Chengquan;Yue, Jibo;Tian, Qingjiu;Xu, Kaijian
作者机构:
关键词: Unmanned aerial vehicle; Vegetation indices; Ultrahigh ground-resolution image; Image textures; Gray-tone spatial-dependence matrix; Reproductive growth stages
期刊名称:ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING ( 影响因子:8.979; 五年影响因子:9.948 )
ISSN: 0924-2716
年卷期: 2019 年 150 卷
页码:
收录情况: SCI
摘要: When dealing with multiple growth stages, estimates of above-ground biomass (AGB) based on optical vegetation indices (VIs) are difficult for two reasons: (i) optical VIs saturate at medium-to-high canopy cover, and (ii) organs that grow vertically (e.g., biomass of reproductive organs and stems) are difficult to detect by canopy spectral VIs. Although several significant improvements have been made for estimating AGB by using narrow band hyperspectral VIs, synthetic aperture radar, laser intensity direction and ranging, the crop surface model technique, and combinations thereof, applications of these new techniques have been limited by cost, availability, data-processing difficulties, and high dimensionality. The present study thus evaluates the use of ultrahigh-ground-resolution image textures, VIs, and combinations thereof to make multiple temporal estimates and maps of AGB covering three winter-wheat growth stages. The selected gray-tone spatial-dependence matrix based image textures (e.g., variance, entropy, data range, homogeneity, second moment, dissimilarity, contrast, correlation) are calculated from 1-, 2-, 5-, 10-, 15-, 20-, 25-, and 30-cm-ground-resolution images acquired by using an inexpensive RGB sensor mounted on an unmanned aerial vehicle (UAV). Optical-VI data were obtained by using a ground spectrometer to analyze UAV-acquired RGB images. The accuracy of AGB estimates based on optical VIs varies, with validation R-2: 0.59-0.78, root mean square error (RMSE): 1.22-1.59 t/ha, and mean absolute error (MAE): 1.03-1.27 t/ha. The most accurate AGB estimate was obtained by combining image textures and VIs, which gave R-2: 0.89, MAE: 0.67 t/ha, and RMSE: 0.82 t/ha. The results show that (i) the eight selected textures from ultrahigh-ground-resolution images were significantly related to AGB, (ii) the combined use of image textures from 1- to 30-cm-ground-resolution images and VIs can improve the accuracy of AGB estimates as compared with using only optical VIs or image textures alone; and (iii) high AGB values from winter-wheat reproductive growth stages can be accurately estimated by using this method; (iv) high estimates of winter-wheat AGB (8-14 t/ha) using the proposed combined method (DIS1, SE30, B460, B560, B670, EVI2 using MSR) show a 22.63% (nRMSE) improvement compared with using only spectral VIs (LCI, NDVI using MSR), and a 21.24% (nRMSE) improvement compared with using only image textures (COR1, DIS1, SE30, EN30 using MSR). Thus, the combined use of image textures and VIs can help improve estimates of AGB under conditions of high canopy coverage.
分类号:
- 相关文献
作者其他论文 更多>>
-
An automated lightweight approach for detecting dead fish in a recirculating aquaculture system
作者:Zhou, Chengquan;Wang, Chenye;Sun, Dawei;Hu, Jun;Ye, Hongbao;Wang, Chenye
关键词:YOLO; Dead fish; RAS; Image processing; Lightweight framework
-
End-to-end stereo matching network with two-stage partition filtering for full-resolution depth estimation and precise localization of kiwifruit for robotic harvesting
作者:Jing, Xudong;Jiang, Hanhui;Niu, Shiao;Zhang, Haosen;Murengami, Bryan Gilbert;Wu, Zhenchao;Li, Rui;Fu, Longsheng;Zhou, Chengquan;Ye, Hongbao;Chen, Jinyong;Fu, Longsheng;Fu, Longsheng;Fu, Longsheng;Majeed, Yaqoob
关键词:Two-stage partition filtering; Kiwifruit localization; LaC-Gwc Net; YOLOv8; Robotic harvesting
-
A self-adaptive parallel image stitching algorithm for unmanned aerial vehicles in edge computing environments
作者:Xu, Xin;Zhang, Li;Yue, Jibo;Zhong, Heming;Wang, Ying;Qiao, Hongbo;Liu, Jie;Lu, Yanhui
关键词:UAV remote sensing; panoramic stitching; multi-core CPU; multi process; edge computing
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Development and Evaluation of a New Spectral Index to Detect Peanut Southern Blight Disease Using Canopy Hyperspectral Reflectance
作者:Wen, Tiantian;Fu, Yuanyuan;Yue, Jibo;Guo, Wei;Liu, Juan;Li, Yuheng
关键词:Agroathelia rolfsii Sacc; canopy hyperspectral reflectance; spectral index
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing