Foot-and-Mouth Disease Virus Antagonizes NOD2-Mediated Antiviral Effects by Inhibiting NOD2 Protein Expression
文献类型: 外文期刊
第一作者: Liu, Huisheng
作者: Liu, Huisheng;Zhu, Zixiang;Xue, Qiao;Yang, Fan;Cao, Weijun;Zhang, Keshan;Liu, Xiangtao;Zheng, Haixue
作者机构:
关键词: 2B; 2C; FMDV; NOD2; antagonistic mechanism
期刊名称:JOURNAL OF VIROLOGY ( 影响因子:5.103; 五年影响因子:5.078 )
ISSN: 0022-538X
年卷期: 2019 年 93 卷 11 期
页码:
收录情况: SCI
摘要: The role of nucleotide-binding oligomerization domain 2 (NOD2) in foot-and-mouth disease virus (FMDV)-infected cells remains unknown. Here, we showed that FMDV infection activated NOD2-mediated beta interferon (IFN-beta) and nuclear factor-kappa B (NF-kappa B) signaling pathways. NOD2 inhibited FMDV replication in the infected cells. FMDV infection triggered NOD2 transcription, while it reduced the abundance of NOD2 protein. Our results revealed that FMDV 2B, 2C, and 3C proteinase (3C(Pro)) were responsible for the decrease in NOD2 protein levels. 3C(Pr)(o) is a viral proteinase that can cleave multiple host proteins and limit protein synthesis. Our previous studies determined that FMDV 2B suppressed protein expression of RIG-I and LGP2. Here, we found that 3C(Pro) and 2B also decreased NOD2 expression. However, this is the first report that 2C induced the reduction of NOD2 protein levels. We determined that both 2B- and 2C-induced decreases in NOD2 were independent of the cleavage of host eukaryotic translation initiation factor 4 gamma (eIF4G), induction of cellular apoptosis, or proteasome, lysosome, and caspase pathways. The interactions between NOD2 and 2B or 2C were observed in the context of viral infection. The carboxyl-terminal amino acids 105 to 114 and 135 to 144 of 2B were essential for the reduction of NOD2, while the residues 105 to 114 were required for the interaction. Amino acids 116 to 260 of the carboxyl terminus of 2C were essential for the interaction, while truncated 2C mutants did not reduce NOD2. These data suggested novel antagonistic mechanisms of FMDV that were mediated by 2B, 2C, and 3C(Pro) proteins. IMPORTANCE NOD2 was identified as a cytoplasmic viral pattern recognition receptor in 2009. Subsequently, many viruses were reported to activate NOD2-mediated signaling pathways. This study demonstrated that FMDV infection activated NOD2-mediated IFN-p and NF-kappa B signaling pathways. Host cells have developed multiple strategies against viral infection; however, viruses have evolved many strategies to escape host defenses. FMDV has evolved multiple mechanisms to inhibit host type I IFN production. Here, we showed that NOD2 suppressed FMDV replication during viral infection. FMDV 2B, 2C, and 3C(Pro) decreased NOD2 protein expression by different mechanisms to promote viral replication. This study provided new insight into the immune evasion mechanisms mediated by FMDV and identified 2B, 2C, and 3C(Pro) as antagonistic factors for FMDV to evade host antiviral responses.
分类号:
- 相关文献
作者其他论文 更多>>
-
ASFV infection induces macrophage necroptosis and releases proinflammatory cytokine by ZBP1-RIPK3-MLKL necrosome activation
作者:Zhang, Dajun;Hao, Yu;Yang, Xing;Shi, Xijuan;Zhao, Dengshuai;Chen, Lingling;Liu, Huanan;Zhu, Zixiang;Zheng, Haixue
关键词:ASFV; host macrophages; necroptosis signaling; ZBP1; Z-DNA; proinflammatory cytokines
-
African Swine Fever Virus I267L Is a Hemorrhage-Related Gene Based on Transcriptome Analysis
作者:Wen, Yuan;Duan, Xianghan;Ren, Jingjing;Zhang, Jing;Guan, Guiquan;Ru, Yi;Li, Dan;Zheng, Haixue;Wen, Yuan;Duan, Xianghan;Ren, Jingjing;Zhang, Jing;Guan, Guiquan;Ru, Yi;Li, Dan;Zheng, Haixue
关键词:African swine fever virus; I267L; hemorrhage; F3; tissue factor
-
The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat
作者:Lyu, Jinyang;Sun, Na;Yang, Fan;Li, Xuepeng;Mu, Junyi;Zhou, Runxiang;Zheng, Guolan;Yang, Xin;Zhang, Chenxuan;Han, Chao;Xia, Guang-Min;Fan, Min;Bai, Ming-Yi;Wang, Dongzhi;Xiao, Jun;Li, Genying;Xiao, Jun;Xiao, Jun
关键词:wheat grain length; brassinosteroid; sugar; TabHLH489; SnRK1
-
Unravelling bioaccumulation, depletion and metabolism of organophosphate triesters in laying hens: Insight of in vivo biotransformation assisted by diester metabolites
作者:Yin, Yuhan;Zhao, Nannan;Xiao, Zhiming;Wang, Ruiguo;Wang, Peilong;Li, Xiaomin;Pan, Wenxiao;Xue, Qiao;Fu, Jie
关键词:Organophosphate triesters; Diester metabolites; In vivo behavior; Laying hens ' tissues; Accumulation/depletion kinetics; In silico modeling
-
Single- cell profiling of African swine fever virus disease in the pig spleen reveals viral and host dynamics
作者:Zhu, Zixiang;Mao, Ruoqing;Liu, Baohong;Liu, Huanan;Shi, Zhengwang;Zhang, Kunpeng;Liu, Huisheng;Zhang, Danyang;Liu, Jia;Zhao, Zhenxiang;Li, Kangli;Yang, Fan;Cao, Weijun;Zhang, Xiangle;Shen, Chaochao;Sun, Dehui;Tian, Hong;Ru, Yi;Feng, Tao;He, Jijun;Guo, Jianhong;Zhang, Keshan;Zhang, Shilei;Zheng, Haixue;Mao, Ruoqing;Liu, Huanan;He, Jijun;Guo, Jianhong;Zheng, Haixue;Liu, Huanan;Shi, Zhengwang;Zhang, Xiangle;Shen, Chaochao;He, Jijun;Guo, Jianhong;Zheng, Haixue;Wang, Liyuan;Tang, Zhonglin;Ding, Chan;Han, Jun
关键词:African swine fever virus; single- cell RNA sequencing; host antiviral response; monocytes; cellular tropism
-
The Female-Biased General Odorant Binding Protein 2 of Semiothisa cinerearia Displays Binding Affinity for Biologically Active Host Plant Volatiles
作者:Tu, Jingjing;Wang, Zehua;Yang, Fan;Liu, Han;Qiao, Guanghang;Wang, Shanning;Tu, Jingjing;Zhang, Aihuan
关键词:Semiothisa cinerearia; general odorant binding protein; ligand-binding spectrum; molecular docking; electrophysiological; behavioral responses
-
Genome-wide variants and optimal allelic combinations for citric acid in tomato
作者:Gai, Wenxian;Yuan, Liangdan;Ahiakpa, John Kojo;Li, Fangman;Ge, Pingfei;Zhang, Xingyu;Tao, Jinbao;Wang, Fei;Yang, Yang;Zhang, Yuyang;Yang, Fan;Zhang, Yuyang;Zhang, Yuyang;Zhang, Yuyang
关键词: