Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest
文献类型: 外文期刊
第一作者: Chen, Jingjing
作者: Chen, Jingjing;Duan, Yajie;Hu, Yulin;Li, Weiming;Sun, Dequan;Hu, Huigang;Xie, Jianghui;Chen, Jingjing;Duan, Yajie;Hu, Yulin;Li, Weiming;Sun, Dequan;Hu, Huigang;Xie, Jianghui
作者机构:
期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )
ISSN: 1471-2229
年卷期: 2019 年 19 卷
页码:
收录情况: SCI
摘要: BackgroundMature fruit cracking during the normal season in African Pride (AP) atemoya is a major problem in postharvest storage. Our current understanding of the molecular mechanism underlying fruit cracking is limited. The aim of this study was to unravel the role starch degradation and cell wall polysaccharide metabolism in fruit ripening and cracking after harvest through transcriptome analysis.ResultsTranscriptome analysis of AP atemoya pericarp from cracking fruits of ethylene treatments and controls was performed. KEGG pathway analysis revealed that the starch and sucrose metabolism pathway was significantly enriched, and approximately 39 DEGs could be functionally annotated, which included starch, cellulose, pectin, and other sugar metabolism-related genes. Starch, protopectin, and soluble pectin contents among the different cracking stages after ethylene treatment and the controls were monitored. The results revealed that ethylene accelerated starch degradation, inhibited protopectin synthesis, and enhanced the soluble pectin content, compared to the control, which coincides with the phenotype of ethylene-induced fruit cracking. Key genes implicated in the starch, pectin, and cellulose degradation were further investigated using RT-qPCR analysis. The results revealed that alpha-amylase 1 (AMY1), alpha-amylase 3 (AMY3), beta-amylase 1 (BAM1), beta-amylase 3 (BAM3), beta-amylase 9 (BAM9), pullulanase (PUL), and glycogen debranching enzyme (glgX), were the major genes involved in starch degradation. AMY1, BAM3, BAM9, PUL, and glgX all were upregulated and had higher expression levels with ethylene treatment compared to the controls, suggesting that ethylene treatment may be responsible for accelerating starch degradation. The expression profile of alpha-1,4-galacturonosyltransferase (GAUT) and granule-bound starch synthase (GBSS) coincided with protopectin content changes and could involve protopectin synthesis. Pectinesterase (PE), polygalacturonase (PG), and pectate lyase (PEL) all involved in pectin degradation; PE was significantly upregulated by ethylene and was the key enzyme implicated pectin degradation.ConclusionBoth KEGG pathway enrichment analysis of DEGs and material content analysis confirmed that starch decomposition into soluble sugars and cell wall polysaccharides metabolism are closely related to the ripening and cracking of AP atemoya. A link between gene up- or downregulation during different cracking stages of atemoya fruits and how their expression affects starch and pectin contents were established by RT-qPCR analysis.
分类号:
- 相关文献
作者其他论文 更多>>
-
MaEIL4-MaMADS36-MaACS7 module transcriptionally regulates ethylene biosynthesis during banana fruit ripening
作者:Fu, Maoni;Zheng, Yunke;Zhang, Jing;Zhang, Jianbin;Miao, Hongxia;Wang, Jingyi;Jin, Zhiqiang;Xie, Jianghui;Liu, Juhua;Fu, Maoni;Zheng, Yunke;Zhang, Jing;Zhang, Jianbin;Miao, Hongxia;Wang, Jingyi;Jin, Zhiqiang;Xie, Jianghui;Liu, Juhua;Fu, Maoni;Zhang, Jing;Zhang, Jianbin;Jia, Caihong;Miao, Hongxia;Wang, Jingyi;Liu, Juhua;Fu, Maoni;Li, Xinguo;Deng, Chengju;Zheng, Sijun
关键词:
-
The Transcription Factor ZmMYBR24 Gene Is Involved in a Variety of Abiotic Stresses in Maize (Zea mays L.)
作者:Bao, Liangliang;Sun, Wen;Wang, Jiaxin;Zhou, Yuyang;Wang, Jiahao;Wang, Qi;Zhou, Yu;Zhang, Lin;Wang, Zhenhua;Li, Chunxiang;Di, Hong;Sun, Dequan;Lin, Hong;Fan, Jinsheng
关键词:maize; ZmMYBR24 gene; adversity stress; functional validation; RNA-seq
-
Shaping the future of bananas: advancing genetic trait regulation and breeding in the postgenomics era
作者:Miao, Hongxia;Zhang, Jianbin;Zheng, Yunke;Jia, Caihong;Wang, Jingyi;Zhang, Jing;Sun, Peiguang;Jin, Zhiqiang;Zhou, Yongfeng;Wang, Wei;Xie, Jianghui;Liu, Juhua;Miao, Hongxia;Zhang, Jianbin;Jia, Caihong;Hu, Yulin;Wang, Jingyi;Zhang, Jing;Sun, Peiguang;Jin, Zhiqiang;Zhou, Yongfeng;Wang, Wei;Xie, Jianghui;Liu, Juhua;Miao, Hongxia;Zhang, Jianbin;Zheng, Yunke;Jia, Caihong;Wang, Jingyi;Zhang, Jing;Sun, Peiguang;Wang, Wei;Liu, Juhua;Hu, Yulin;Zhou, Yongfeng;Zheng, Sijun;Zheng, Sijun;Rouard, Mathieu
关键词:
-
GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)
作者:Li, Chunxiang;Song, Yongfeng;Zhu, Yong;Cao, Mengna;Han, Xiao;Xu, Yan;Zhou, Yu;Zeng, Xing;Zhang, Lin;Dong, Ling;Wang, Zhenhua;Di, Hong;Fan, Jinsheng;Sun, Dequan
关键词:maize; planting density; ear leaf structure; GWAS; candidate genes
-
Genetic Diversity and Construction of Salt-Tolerant Core Germplasm in Maize (Zea mays L.) Based on Phenotypic Traits and SNP Markers
作者:Song, Yongfeng;Wang, Jiahao;Ma, Yingwen;Wang, Jiaxin;Bao, Liangliang;Zhou, Yu;Zeng, Xing;Wang, Zhenhua;Zhang, Lin;Li, Chunxiang;Di, Hong;Sun, Dequan;Lin, Hong;Fan, Jinsheng
关键词:
Zea mays L.; germplasm conservation; phenotypic evaluation; SNP genotyping; Mahalanobis distance; subgroup classification; seed germination stress -
Polyphenols Improve the Digestibility of Eel Myofibrillar Protein by Alleviating Oxidation Through Noncovalent Interaction
作者:Zhangli, Yixia;Luo, Yuhuan;Xie, Jingjing;Chen, Jingjing;Dai, Wenting
关键词:natural phenolic compounds; myofibrillar protein; protein oxidation; in vitro digestion; functionalmodification
-
Straw mineralization and carbon dioxide emissions in soils with different salinity levels
作者:Shi, Cailing;Xu, Lei;Xie, Wenjun;Li, Weiming;Zhang, Lichang;Zhang, Jing;Zhang, Haibo;Zhang, Jing;Sun, Yu
关键词: