OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis

文献类型: 外文期刊

第一作者: You, Xiaoman

作者: You, Xiaoman;Zhang, Wenwei;Zhang, Jie;Wang, Chunming;Jing, Ruonan;Wu, Hongming;Cai, Yue;Feng, Zhiming;Hu, Jinlong;Yan, Haigang;Kong, Fei;Zhang, Huan;Zheng, Ming;Jiang, Ling;Wan, Jianmin;Zhu, Shanshan;Chen, Weiwei;Ren, Yulong;Lin, Qibing;Cheng, Zhijun;Zhang, Xin;Lei, Cailin;Wang, Haiyang;Wan, Jianmin

作者机构:

关键词: jasmonic acid; OsMYC2; OsPEX5; rice; spikelet development

期刊名称:NEW PHYTOLOGIST ( 影响因子:10.151; 五年影响因子:10.475 )

ISSN: 0028-646X

年卷期:

页码:

收录情况: SCI

摘要: Spikelet is the primary reproductive structure and a critical determinant of grain yield in rice. The molecular mechanisms regulating rice spikelet development still remain largely unclear. Here, we report that mutations in OsPEX5, which encodes a peroxisomal targeting sequence 1 (PTS1) receptor protein, cause abnormal spikelet morphology. We show that OsPEX5 can physically interact with OsOPR7, an enzyme involved in jasmonic acid (JA) biosynthesis and is required for its import into peroxisome. Similar to Ospex5 mutant, the knockout mutant of OsOPR7 generated via CRISPR-Cas9 technology has reduced levels of endogenous JA and also displays an abnormal spikelet phenotype. Application of exogenous JA can partially rescue the abnormal spikelet phenotype of Ospex5 and Osopr7. Furthermore, we show that OsMYC2 directly binds to the promoters of OsMADS1, OsMADS7 and OsMADS14 to activate their expression, and subsequently regulate spikelet development. Our results suggest that OsPEX5 plays a critical role in regulating spikelet development through mediating peroxisomal import of OsOPR7, therefore providing new insights into regulation of JA biosynthesis in plants and expanding our understanding of the biological role of JA in regulating rice reproduction.

分类号:

  • 相关文献
作者其他论文 更多>>