Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray

文献类型: 外文期刊

第一作者: Xu, Bi Yu

作者: Xu, Bi Yu;Su, Wei;Liu, Ju Hua;Wang, Jia Bao;Jin, Zhi Qiang

作者机构:

关键词: banana (Musa AAA group cv Brazilian);cDNA microarray;postharvest banana ripening;suppression subtractive hybridization;GENE-EXPRESSION;CARBOHYDRATE-METABOLISM;ARABIDOPSIS-THALIANA;CELL-WALL;FRUIT;STRESS;PROTEIN;SEQUENCE;MAIZE;TEMPERATURE

期刊名称:PLANTA ( 影响因子:4.116; 五年影响因子:4.316 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The banana (Musa acuminate L. AAA group) fruit undergoes a postharvest ripening process, which plays an important role in improving the quality and extending the shelf life of bananas. To manipulate postharvest banana ripening, a better understanding of the mechanism of postharvest ripening is necessary. The isolation of mRNA transcripts encoding proteins associated with the ripening process is a powerful tool for this purpose. To isolate differentially expressed genes at the early stage of postharvest banana ripening, a forward suppression subtractive hybridization (SSH) cDNA library was constructed. SSH was performed with cDNA from banana fruit on the day of harvest as the "driver" and cDNA from banana fruit 2 days postharvest (DPH) as the "tester." A total of 289 clones in the SSH library were sequenced. BLASTX results revealed that 191 cDNAs had significant sequence homologies with known sequences in the NCBI database. Of the 191 cDNAs, 138 were singletons, and 53 belonged to divergent clusters containing 2-8 sequences. The identified cDNAs encoded proteins involved in cellular processes such as: metabolism; protein destination and storage; protein synthesis; signal transduction; transport and intracellular traffic; cell structure, growth, and division; transcription and post-transcription; and disease and defense. To characterize differentially expressed cDNAs in the SSH library, cDNA microarray analysis was conducted. A total of 26 cDNAs in the 2-DPH banana fruit were found to be up-regulated and these results were confirmed by using reverse transcriptase-polymerase chain reaction (RT-PCR). The information generated in this study provides new clues to aid in the understanding of banana ripening.

分类号: Q94

  • 相关文献

[1]Rapid evolution and complex structural organization in genomic regions harboring multiple prolamin genes in the polyploid wheat genome. Gao, Shuangcheng,Gu, Yong Qiang,Wu, Jiajie,Coleman-Derr, Devin,Huo, Naxin,Crossman, Curt,Jia, Jizeng,Zuo, Qi,Ren, Zhenglong,Anderson, Olin D.,Kong, Xiuying.

[2]Differential gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. Wan, Fang-Hao,Wan, Fang-Hao.

[3]Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Zhang, Hongbo,Li, Wenzheng,Chen, Jia,Yang, Yuhong,Zhang, Zhijin,Zhang, Haiwen,Wang, Xue-Chen,Huang, Rongfeng.

[4]Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana. Lu, CFL,de Noyer, SB,Hobbs, DH,Kang, JL,Wen, YC,Krachtus, D,Hills, MJ.

[5]Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). Li, Hui-Yong,Wang, Tian-Yu,Shi, Yun-Su,Fu, Jun-Jie,Song, Yan-Chun,Wang, Guo-Ying,Li, Yu.

[6]Fine mapping of pss1, a pollen semi-sterile gene in rice (Oryza sativa L.). Li, Wanchang,Jiang, Ling,Zhou, Shirong,Wang, Chunming,Liu, Linglong,Chen, Liangming,Ikehashi, Hiroshi,Wan, Jianmin.

[7]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[8]Nondestructive Examination of Tomato Chilling Injury by Ultraweak Luminescence. Zhao Dan-ying,Sheng Ji-ping,Ding Yang,Shen Lin,Liu Can,Zhao Dan-ying,Sheng Ji-ping,Fan Bei. 2010

[9]Characterization of DNA beta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. Zhou, XP,Xie, Y,Tao, XR,Zhang, ZK,Li, ZH,Fauquet, CM.

[10]Purification and identification of cutinases from Colletotrichum kahawae and Colletotrichum gloeosporioides. Chen, Zhenjia,Franco, Catarina F.,Baptista, Ricardo P.,Cabral, Joaquim M. S.,Coelho, Ana V.,Rodrigues, Carlos J., Jr.,Melo, Eduardo P..

[11]Quantitative trait locus analysis of drought tolerance and yield in maize in China. Xiao, YN,Li, XH,George, ML,Li, MS,Zhang, SH,Zheng, YL.

[12]Identification and characterization of a novel adenine phosphoribosyltransferase gene (ZmAPT2) from maize (Zea mays L.). Wu, Suowei,Yu, Zhanwang,Li, Weihua,Yang, Qingkai,Ye, Chunjiang,Sun, Yan,Jin, Demin,Wang, Bin,Wu, Suowei,Li, Weihua,Yang, Qingkai,Wang, Fengge,Zhao, Jiuran.

[13]Correlation between AS1 gene expression and seed protein contents in different soybean (Glycine max [L.] merr.) cultivars. Wan, TF,Shao, GH,Shan, XC,Zeng, NY,Lam, HM.

[14]Isolation and Analysis of Drought-Induced Genes in Maize Roots. Li Hui-yong,Huang Shu-hua,Shi Yun-su,Song Yan-chun,Zhong Zhong-bao,Wang Guo-ying,Wang Tian-yu,Li Yu,Li Hui-yong. 2009

[15]PROTOPLASMIC FACTORS, ANTIOXIDANT RESPONSES, AND CHILLING RESISTANCE IN MAIZE. ZHANG, JX,CUI, SP,LI, JM,WEI, JK,KIRKHAM, MB.

[16]Isolation and characterization of a cDNA encoding a papain-like cysteine protease from alfalfa. Yan, Longfeng,Han, Jianguo,Sun, Yan,Yan, Longfeng,Yang, Qingchuan,Kang, Junmei,Liu, Zhipeng,Wu, Mingsheng.

[17]Cloning, Localization and Expression Analysis of ZmHsf-like Gene in Zea mays. Li Hui-cong,Li Guo-liang,Liu Zi-hui,Zhang Hong-mei,Zhang Yan-min,Guo Xiu-lin. 2014

[18]Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Wang, Maoyan,Gu, Dan,Liu, Tingsong,Wang, Zhaoqiang,Guo, Xiying,Hou, Wei,Bai, Yunfeng,Chen, Xiaoping,Wang, Guoying.

[19]Gene families of maize glutathione-ascorbate redox cycle respond differently to abiotic stresses. Liu, Yun-Jun,Liu, Yan-Yan,Liu, Yan,Fu, Jun-Jie,Zheng, Jun,Wang, Guo-Ying,Yuan, Yuan. 2012

[20]Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families. Zhang, Zhongbao,Li, Xianglong,Zhang, Chun,Wu, Zhongyi,Zou, Huawen,Wu, Zhongyi.

作者其他论文 更多>>