Terpene synthases GhTPS6 and GhTPS47 participate in resistance to Verticillium dahliae in upland cotton
文献类型: 外文期刊
第一作者: Liu, Wei
作者: Liu, Wei;Wu, Yuchen;Zhang, Yuzhi;Li, Xiaona;Li, Jianing;Zhu, Wei;Ma, Zongbin;Zhang, Zhiqiang;Wu, Yuchen;Zhang, Yuzhi;Li, Wei;Zhang, Zhiqiang;Li, Wei
作者机构:
关键词: Terpenes; Gossypium hirsutum; Verticillium wilt; VIGS; Metabolome
期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:6.1; 五年影响因子:6.2 )
ISSN: 0981-9428
年卷期: 2024 年 213 卷
页码:
收录情况: SCI
摘要: Terpene synthases (TPSs) are enzymes responsible for catalyzing the production of diverse terpenes, the largest class of secondary metabolites in plants. Here, we identified 107 TPS gene loci encompassing 92 full-length TPS genes in upland cotton ( Gossypium hirsutum L.). Phylogenetic analysis showed they were divided into six subfamilies. Segmental duplication and tandem duplication events contributed greatly to the expansion of TPS gene family, particularly the TPS-a and TPS-b subfamilies. Expression profile analysis screened out that GhTPS s may mediate the interaction between cotton and Verticillium dahliae . Three-dimensional structures and subcellular localizations of the two selected GhTPSs, GhTPS6 and GhTPS47, which belong to the TPS-a subfamily, demonstrated similarity in protein structures and nucleus and cytoplasm localization. Virus-induced gene silencing (VIGS) of the two GhTPS s yielded plants characterized by increased wilting and chlorosis, more severe vascular browning, and higher disease index than control plants. Additionally, knockdown of GhTPS6 and GhTPS47 led to the down-regulation of cotton terpene synthesis following V. dahliae infection, indicating that these two genes may positively regulate resistance to V. dahliae through the modulation of disease-resistant terpene biosynthesis. Overall, our study represents a comprehensive analysis of the G . hirsutum TPS gene family, revealing their potential roles in defense responses against Verticillium wilt.
分类号:
- 相关文献
作者其他论文 更多>>
-
P-modulated NiP active centers and PNC support enabling synergistic H2/H2O activation in cellulose cascade conversion
作者:Luo, Yixin;Ma, Ruitong;Sun, Chengjie;Yu, Tongyan;Yan, Haoxuan;Zhou, Xiaomei;Guan, Qingxin;Li, Wei;Qiu, Mo
关键词:Biomass conversion; Hydrolysis of cellulose; Bifunctional catalyst; Frustrated Lewis pars; Activated H2 heterolysis
-
Pristine/magnesium-loaded biochar and ZVI affect rice grain arsenic speciation and cadmium accumulation through different pathways in an alkaline paddy soil
作者:Zhang, Chen;Shi, Dong;Wang, Chao;Hu, Yanxia;Li, Xiaona;Hou, Yanhui;Zheng, Ruilun;Zhang, Chen;Li, Huafen;Sun, Guoxin
关键词:Cadmium (Cd); Arsenic (As) speciation; Co-contamination; Magnesium-loaded biochar; Zero-valent iron (ZVI); Rice
-
LACCASE35 enhances lignification and resistance against Pseudomonas syringae pv. actinidiae infection in kiwifruit
作者:Li, Yawei;Zhang, Dongle;Wang, Xiaojie;Wu, Shunyuan;Liu, Pu;Wang, Xiaojie;Zhou, Rongrong;Fang, Zemin;Bai, Fuxi;Li, Rui;Liu, Wei;Huang, Lili
关键词:
-
Characterization of the wall-associated kinase (WAK) gene family in Gossypium barbadense reveals the positive role of GbWAK5 in salt tolerance
作者:Zhang, Zhiqiang;Ma, Wenyu;Wang, Haijuan;Ren, Zhongying;Liu, Yangai;He, Kunlun;Zhang, Fei;Ye, Wuwei;Huo, Wenqi;Li, Wei;Ma, Xiongfeng;Yang, Daigang;Zhang, Zhiqiang;Ren, Zhongying;Liu, Yangai;He, Kunlun;Zhang, Fei;Li, Wei;Ma, Xiongfeng;Yang, Daigang;Wang, Haijuan;Ma, Wenyu
关键词:Wall-associated kinases; Sea island cotton; Salt stress; VIGS; Na+/K+
-
Multi-scale structural influence of starch on their interaction of caffeic acid and starch after freeze-thaw: Taking potato starch and lotus seed starch as examples
作者:Zhao, Renjie;Li, Chi;Liu, Qiannan;Liu, Wei;Zhang, Liang;Zhang, Zhenzhen;Zhao, Ruixuan;Hu, Honghai;Yao, Jia;Li, Chi
关键词:Caffeic acid; Starch; Interaction
-
Influence of the 'painless' TRP channel on temperature-dependent escape and humidity-related pupation in Bactrocera dorsalis larvae
作者:Zhang, Yan;Zhang, Panpan;Luo, Zhicai;Wang, Qi;Zhang, Jie;Yang, Minghuan;Yan, Shanchun;Liu, Wei;Wang, Guirong
关键词:Bactrocera dorsalis; Bdorpainless; CRISPR/Cas9; extreme environments; escape behavior
-
Multienzyme cascade for synthesis of hydroxytyrosol via engineered Escherichia coli
作者:Xiong, Tianzhen;Li, Xinmeng;Yue, Huidie;Liu, Junling;Bai, Dingyuan;Li, Wei;Fan, Guangyan;Xiong, Tianzhen;Li, Xinmeng;Yue, Huidie;Liu, Junling;Bai, Dingyuan;Li, Wei;Fan, Guangyan;Xiong, Tianzhen;Liu, Wei;Xiong, Tianzhen
关键词:Hydroxytyrosol;
Escherichia coli ; Cascade reaction; Whole cell biotransformation