Whole-Genome Sequencing of Flammulina filiformis and Multi-Omics Analysis in Response to Low Temperature

文献类型: 外文期刊

第一作者: Liang, Xinmin

作者: Liang, Xinmin;Han, Jing;Shu, Xueqin;Wang, Bo;Jia, Dinghong;Peng, Weihong;He, Xiaolan;Liu, Xun;Cui, Yuqin;Peng, Weihong;Lei, Mengting

作者机构:

关键词: Flammulina filiformis; whole-genome sequencing; transcriptome; metabolome; cold adaptation

期刊名称:JOURNAL OF FUNGI ( 影响因子:4.0; 五年影响因子:4.5 )

ISSN:

年卷期: 2025 年 11 卷 3 期

页码:

收录情况: SCI

摘要: The growth of Flammulina filiformis is strongly dependent on low-temperature cues for the initiation of primordia formation. To obtain a comprehensive understanding of the molecular mechanisms that govern the mycelial response to cold stress, de novo genome sequencing of the F. filiformis monokaryon and multi-omics data (transcriptome and metabolome) analyses of the mycelia, primordia, and fruiting bodies were conducted in the present study. Genome sequencing based on PacBio HiFi and Hi-C resulted in a 36.3 Mb genome sequence that mapped to 12 chromosomes, comprising 11,886 protein-coding genes. A total of 25 cold-responsive (COR) genes and 520 cold-adapted enzymes were identified in the genome. Multi-omics analyses showed that the pathways related to carbohydrate metabolism in the mycelia under low temperature (10 degrees C) were significantly enriched. Further examination of the expression profiles of carbohydrate-active enzymes (CAZymes) involved in carbohydrate metabolism revealed that out of 515 CAZyme genes in F. filiformis, 58 were specifically upregulated in mycelia under low-temperature conditions. By contrast, the expression levels of these genes in primordia and fruiting bodies reverted to those prior to low-temperature exposure. These indicate that CAZyme genes are important for the low-temperature adaptation of F. filiformis. This research contributes to the targeted breeding of F. filiformis.

分类号:

  • 相关文献
作者其他论文 更多>>